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In the last five years product-line (PL) Engineering has become a major topic in 
industrial software engineering. It introduces a focus-shift from the development of 
single systems to the development of complete system families. This paradigm shift 
aims at the efficient and cost-effective development through large-scale reuse by 
exploiting the family members' commonalities and by controlling their variabilities. 
Reported results are indeed encouraging. These include error and effort reductions by 
a magnitude as well as strong time-to-market improvements by up-to one third [5, 6, 
7, 8]. 
  
While research so far focused mostly on the technical, implementation-centered 
activities related to family-based development, the shifting is not gradually [1]. 
Organizations become more and more aware that in order to be successful the 
technical activities must be performed in an organizational and technical framework 
that is appropriately prepared to support them. This raises organizational issues, issues 
of PL planning, as well as issues concerning requirements modeling and management 
in the context of product lines. These more up-stream activities have not yet seen as 
much attention, but they are nevertheless critical for the successful introduction of a 
product line approach [2, 3]. 
 
In this workshop we focus on the issues that are particularly important when 
introducing a product line approach in an industrial environment. This discussion is 
centered around the following four key issues:   

− Transition Approach 
− Organizational Issues 
− Product Line Management 
− Variability Modeling  

 

Transition Approach 
When transitioning a running organization into a product-line engineering 
organization, several issues must be considered that range from bridging 
technological gaps to solving people issues. Existing development units may not be 
organized to allow product-line engineering, but follow an independent work style 
with design decisions made on a product-by-product basis. This leads to the 
duplication of features that are developed by different units and for different products. 
An organizational re-structuring is necessary that takes into account a joint 
development of the common product-line infrastructure and an accompanying re-
assignment of responsibilities. 
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In most cases this transition can't be done in one step. Rather, a product-line 
engineering approach must be introduced incrementally. This implies the need to 
determine the best starting point in terms of products, functional areas, and 
organizational units. An important success factor in this transition is to convince and 
motivate people to follow the new organizational structure and accept the new 
assignment of responsibilities.  
 

Organizational Issues 
A key factor of successful product-line engineering is an appropriate organizational 
structure of the software development organization. Several different organizational 
alternatives are possible, ranging from one single development unit that is responsible 
for developing and maintaining the product-line infrastructure as well as deriving the 
single products, to a hierarchical structuring of the development units with the tasks 
for developing and maintaining the infrastructure as well as the single products 
distributed over several units [9, 10]. 
Identifying the organizational structure that is best suited for a given situation is a 
complex task that is only partially understood yet.  There are many different factors 
that influence this decision process. Examples are the existing organizational 
structure, the potential for people to experience direct benefit from reuse, the strategic 
positioning of the product line in the market, or the size of the organization. But also 
technical aspects do impact the decision. For instance, the organizational structure 
needs to match the software architecture of the product line so that tasks and 
responsibilities can be assigned appropriately to the different development units. This 
is actually a requirement on both, the organizational structure as well as the software 
architecture. Consequently, both need to co-evolve. 
So far, identifying and establishing the right organizational structure is not sufficiently 
understood. Thus, we see at this point in particular the need to further study existing 
and working product-line organizations.  
 

Product-Line Management 
When turning its attention to product line development, an organization faces 
important challenges that go all the way from the initial planning stage, through the 
early development, to the continuous evolution of the product line. 
During planning the appropriate alignment with the overall product portfolio of the 
company and its long-term strategy needs to be established. It is already at this point 
that key decisions are made that will determine the overall economic benefit of the PL 
to the company. These decisions need to be performed in an integrated manner on 
several levels. First of all a commitment needs to be made on the specific systems that 
will be developed as part of the product line. From a strategic point of view, leaving 
inappropriate products out can be a key benefit to the organization, just like finding 
the right systems to include. Here, product-line development directly interfaces with 
strategic management of the company. This interface needs to be appropriately 
managed to ensure success. Similarly, once the products have been identified the key 
assets that need to be developed for reuse must be identified. Again, identifying the 
right assets is key to the economic success of the PL. Bounding decisions this way 
and to this extent is unique to product-line development and is addressed in the 
context of the product line scoping phase [4].   
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Once we identified the initial development plan for the product line, we need to put it 
into practice. This is non-trivial, as the various projects that are part of the product 
line need to be developed in an integrated manner and the shared asset base creates 
important dependencies among the projects. Sustaining these links is crucial as 
otherwise the survival of the product line is at risk. For example, not connecting 
sufficiently the development of the platform with the development of the individual 
systems, risks the economic benefit of product-line development.   
Finally, a PL needs to evolve over time. New products need to be integrated into the 
product line and old systems need to be phased out. This has to be supported by the 
development of appropriate reusable assets. Also the shift in the product line needs to 
be aligned with the overall strategy of the company. These topics have so far hardly 
been addressed. Product-line evolution complicates in particular change management, 
because for each change we must make decisions about affected systems, actually 
changed systems, and so on. 

Variability Modeling 
A key principle of product-line development is the codification and reuse of 
knowledge. This results in the reuse of code components that are generically reusable 
throughout the product line. However, in order to enable and sustain this generic code 
development, the product-line perspective needs to be pervasive throughout all 
artifacts and across all life cycle steps. Be it requirements, design, or test cases, we 
always need to be able to capture the relevance of the product line as a whole, as 
opposed to single systems. Because not everything is equally relevant to every 
system, we need to make explicit the commonalities and the variabilities of the 
artifacts. This is probably the most well-studied topic within the scope of the 
workshop. However, in industrial environments this is still more of an art form than a 
daily practice. 
At this point we are still lacking general approaches that can be applied to all forms of 
artifacts and that also support the efficient instantiation for product-specific situations. 
But even more important is the following point: how can we elicit the information that 
is required as a modeling basis in an efficient manner? We may explicitly not restrict 
ourselves to a system-specific focus as otherwise the resulting assets will be too 
narrow, but we may also not take on an everything-is-important attitude as this would 
lead to a waste of resources and an information overload that may hinder subsequent 
activities. Thus, a major question is: how do we focus beyond a system? 
 

Summary 
In this workshop we focus on the early steps in product-line engineering, i.e., those 
steps that have not yet seen as much attention as the implementation-specific tasks, 
but that are nevertheless critical for a successful product-line engineering project. This 
comprises the transitioning of a running organization into a product-line organization, 
issues of how to organize a development organization to best support product-line 
engineering, tasks of managing a product line which ranges from the initial planning 
to an ongoing evolution, and finally the identification of a product line’s reuse 
potential and its packaging into a product-line architecture and accompanying reuse 
components. The intent of this workshop is to enable a discussion around the four 
aforementioned topics among practitioners and researchers in order to allow an 
exchange of industrial experience and academic results. 
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Abstract 
Many manufacturing organizations adopt product production strategies that influence a wide range of 
factors within the company. These strategies define policies, procedures and structures that affect the 
same areas as a software product line strategy. When an organization initiates a product line strategy, that 
strategy must be integrated with existing strategies while not losing the benefits of the software product 
line strategy. This paper is a brief report of our experience integrating a software product line strategy 
similar to that developed by the Software Engineering Institute with a specific product production 
strategy, the PACE model. Problems such as conflicts in terminology and clashes in organizational 
structure were identified and resolved. We present an integration process that can be used to coordinate a 
software product line approach with other manufacturing strategies. 

Introduction 
The software product line strategy is a comprehensive approach that touches many facets of an 
organization. Software product line initiation, even “green field” initiatives, typically occurs in an existing 
corporate environment. Corporate or business unit initiatives set goals and often mandate strategies to 
achieve those goals. The software product line effort must be consistent with these previously established 
strategies. Product production strategies are guidelines that define how the organization will manage the 
actual creation of a product [Chastek 02]. Aspects of the software product line strategy will, almost 
certainly, provide guidance on some of the same issues as the more general product production strategy. 
For example, a software development business unit can find itself constrained by the initiatives of the 
hard goods units of the corporation. These units have often been in existence longer or manufacture a 
more tangible portion of each product. In the remainder of this paper we will focus on the integration of a 
software product line strategy and product production strategies. 

There are many widely recognized corporate strategies for product production or product manufacture 
such as Product And Cycle-time Excellence (PACE) [McGrath 96], Six Sigma [Pande 00], and Supply 
Chain Management [Chopra 00].  Each strategy solves specific types of problems and imposes 
assumptions that constrain possible solutions. The scope of each strategy varies. Supply chain 
management impacts most of the phases in a manufacturing process but it is limited to the management of 
inputs into these phases and delivery to customers. Six Sigma techniques impact the record keeping and 
decision making of most steps in the product development process but not the technical details of how to 
carryout the steps. The PACE strategy is a comprehensive strategy that specifies some portion of the 
organizational structure and establishes priorities among activities in the manufacturing process. 

These examples illustrate how the software product line and product production strategies can have one of 
four relationships with one another. The product line strategy (PL) may overlap with another strategy (S), 
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as in Figure 1a, so that there is some region of potential conflict or agreement. There are also regions in 
which neither interacts with the other. The two strategies must be synchronized in the common region and 
each must be modified to accommodate the compromises necessary in the region of commonality. 
Strategy S may totally encompass strategy PL, Figure 1b. Strategy S will often dominate strategy PL by 
defining organizational and management structures. Strategy PL must be integrated into strategy S. This 
situation has the potential to reduce the effectiveness of the PL strategy. 
 

 S 

PL 

a 

S 

PL 

b 

S 

PL 

c 

S 

PL 

d 
 

Figure 1 

The PL strategy may totally encompass strategy S as in Figure 1c. Even though the PL strategy has the 
broader scope, if strategy S is a mandated corporate initiative, PL may still have to be modified to 
accommodate S. Finally strategies S and PL may be disjoint, Figure 1d, and each is implemented without 
regard to the other. 

In this paper we present a study of initiating a software product line in an organization that had been using 
the PACE strategy for several years. For the sake of clarity we will refer to the software product line 
strategy we used, which is similar to the SEI approach, as the SPL strategy in the remainder of the paper. 
In the next section we provide an overview of PACE, but we will assume the reader has a knowledge of 
software product lines. The following sections identify the points of conflict between the PACE strategy 
and the software product line strategy, a list of lessons learned as we integrated the two strategies, and 
finally a process for integrating a software product line strategy with a product production strategy. 

Context 
This case study summarizes our experience in a business unit of a large multi-national enterprise that 
manufactures hardware devices with a significant software component. The experience spans 
approximately 2 years of training and mentoring covering management, requirements capture and 
analysis, asset acquisition, and architecture definition work. The president of the business unit introduced 
the PACE model roughly a year before the vice-president introduced the software product line strategy. 
The engineers in the business unit are highly technical and welcomed the new product line ideas. 
Members of the president’s staff, other than the vice president, were concerned that the product line 
concept would interfere with the PACE strategy that was all ready in place. Middle managers in the 
software unit were the most resistant to the new product line ideas. Their role, as the source of experience, 
was threatened by this new approach. The initial support of the vice president and the eventual acceptance 
by the president has made progress possible. The reluctance of the middle managers continues to 
minimized that progress. 

Pace Model Description 
The PACE strategy focuses on product and cycle-time excellence, as the name implies. The rapid delivery 
of an individual product is the highest priority. In the local implementation of PACE, a second priority is 
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to give the customer exactly what they want. This leads to late changes in the requirements for a product 
since the customer will often decide to forego certain functionality in order to ensure an earlier delivery 
date. The organization is structured to keep decision making as close to the problem as possible. Rather 
than a hierarchical organizational structure, PACE defines a “core” team that comprises a representative 
from the functional product areas such as software development, hardware development, marketing and 
product planning. A Core Team is empowered to make any decisions that directly affect the delivery 
schedule of the product production project. 

The Product Strategy in the PACE model consists of 4 phases. 
? ? Product Strategy Vision – This vision provides direction and context to the part of the 

organization that is responsible for product production. This vision can be the basis for 
selecting development techniques and for shaping the product itself. 

? ? Product Platform Strategy – This strategy identifies the common functionality among a set of 
products and formulates a strategy to build a software platform that can deliver this 
functionality to several products. The platform allows new projects to be more reliably 
estimated both in terms of costs and delivery schedule. 

? ? Product Line Strategy – This strategy determines the sequence in which a set of products will 
be built and the timing of the product releases. PACE views the Platform Strategy as more 
important than the Product Line Strategy. 

? ? New Product Development – A Product Approval Committee (PAC) approves new products. 
This committee charters a Core Team to direct each product production project. With each 
new product, the contents of the platform and the sequence of products may be changed. The 
PAC allocates the corporate resources available for new product development based on 
information provided by various analyses. 

There are three keys to management in PACE. 

? ? Core Team – As mentioned previously, a Core Team controls and drives a product 
development project. The team is a cross-functional team that maintains a decision-making 
capability close to the source of problems and questions. In theory, this team ensures rapid 
decision-making. In practice, conflicts between processes often require investigation and 
compromise as each decision is made.  

? ? Phase Review Process – This is a process in which senior management reviews the market, 
costs, and schedule for the product to determine whether to continue the development of that 
product. 

? ? Structured methodology – PACE defines a structure for process definition. Only the overall 
product development process is specified. Otherwise the processes that are needed are 
identified and defined by the product team. The PACE model provides a terminology for 
describing four levels of breakdown in a process definition. 

Points of Conflict 
PACE has many similarities to SPL. There are, however, several definite points of conflict between the 
two approaches. In each subsection we will describe the conflict and then report on our recent experience 
with a specific client. 

Core Team 
Each Core Team is empowered to make decisions and spend money in order to produce its product. There 
is no line of responsibility from one Core Team to another. This is obviously in conflict with the SPL 
approach in which the entire set of products is closely coordinated. 
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This issue has not been totally resolved in our current engagement and the current organization will 
continue to evolve to the final accommodation. The company’s culture was project-based. It has evolved 
to the point where the decision-making process considers commonality among products in the form of a 
platform used as a basis for all products. Most decisions, particularly tactical ones, are still largely 
product-centric. As the company’s development process becomes more architecture-based, the decision-
making process becomes broader in scope. We believe that as the client’s SPL culture matures, the PACE 
Core Teams will see the benefits of cooperating through the SPL Manager when reaching decisions. 

This was, and still is, the greatest risk that faces the client’s organization.  

Product as Primary Focus 
SPL is focused on a set of products and their commonalities and variabilities. This approach to faster 
cycle time assumes that a growing stockpile of assets that include components and architecture will drive 
the rapid development of products. The PACE approach assumes that reducing the administrative 
overhead via the Core Teams is the best approach to reducing cycle time. 

The initial products that were scheduled for development were several variations of a single product. The 
variations were actually based on a single factor; the country in which the product was to be deployed. 
This made the variations so closely related that the variations do not introduce any new functionality. As 
the product line expanded beyond this initial set of products the team recognized the need for a broader 
perspective. The SPL manager was added to the organizational structure and the team is including a 
product line perspective to its product focus.  

This conflict has been adequately, though not completely, addressed in the client’s organization.  

Inadequate Treatment of Variability 
The PACE approach specifies a platform – common functionality - for a sequence of products. This is 
useful but surprising in a strategy that emphasizes individual products. The Product Platform Strategy 
does not identify the full functionality of the products. It focuses on the commonality among the products 
and uses the commonalities to define the platform. This does not give a true picture of the entire scope of 
functionality for all of the products since variations among products may include significant functionality 
found only in a few of the products. The SPL strategy includes a variability, as well as commonality, 
analysis so that the full range of functionality is identified. 

Adding the variability analysis of the SPL strategy does not conflict directly with any activities in the 
PACE strategy. It provides more information for planning and estimation activities. There is an indirect 
conflict with the Phase Review Process. This process allows a large number of new development projects 
to begin and applies increasingly rigorous criteria as the projects advance through the development 
process. Using this approach to determine membership in the product line, as opposed to the in-depth 
scope analysis used in SPL, results in a constantly changing degree of variability and changes to 
functionality. In this situation, variability analysis will over estimate the functionality that must be 
developed. The PACE planning process was modified to include variability analysis and to determine 
membership in the product line earlier in the development process.  

Variability analysis has made the estimates of functionality and the shape of the architecture more precise. 

Product Line Concept 
The PACE strategy identifies what it refers to as a “product line strategy.” The product line of PACE is 
not the product line of the SPL strategy.  The PACE product line strategy does not provide a context in 
which all of the functionality of all the products is analyzed. Nor is this strategy the driving force of the 
PACE Product strategy. It is considered to be secondary to the Platform Strategy.  
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Since the PACE concept of a product line is essentially a small subset of SPL, training was required to 
expand the staff’s understanding. The harder problem was the priority of the platform strategy over the 
product line strategy.  The development team had a very tight deadline for the first product in the product 
line and needed to introduce the SPL strategy incrementally. The decision was made to limit the SPL core 
asset team’s contribution to the first product to building the common platform rather than a complete set 
of core assets. The product developers’ will provide the assets required to complete the product. 

Senior management has agreed to a phased plan in which succeeding product development projects will 
have an expanding set of core assets on which to rely. 

Lessons Learned 
When the reward structure is tied to the strategy, analyses must show that the modifications to the 
strategy will not reduce rewards.  The managers’ bonuses, in the client’s implementation of the PACE 
strategy, were tied to on-time acceptance of a delivered product. This puts pressure on project managers 
to ignore generalizing assets to be usable across the set of products. Projections about deliveries across 
the entire product line showed a greater likelihood of on-time deliveries as a result of the unification of 
the SPL strategy with the PACE strategy.  

Conflicting terminology with different or overlapping meanings can hide disagreements until later 
in a project. The PACE model defines a “product line strategy” that is different from SPL. The extent of 
the difference was not understood until issues about priorities in assignments and scheduling arose. PACE 
places more emphasis on the product while the SPL strategy places more importance on the set of 
products. An integrated glossary was used to identify and resolve conflicts. 

The existing manufacturing strategy usually has broad executive support, making it difficult to 
modify. This is particularly true if the product production strategy extends beyond the SPL, as shown in 
Figure 1b. Non-software executives often are not eager to make changes solely to improve the software 
development process. The local PACE implementation spanned product planning, project management, 
hardware engineering, and software engineering. The hardware professionals were not familiar with, and 
did not understand, some of the software development problems. Senior management training sessions 
were necessary to illustrate the advantages of close cooperation. Papers and case studies about other 
companies in the same domain were the most persuasive for senior management. 

The “goodness of fit” of the product production strategy to software development predicts the 
effort that will be required to align the two strategies. The PACE documentation provides examples of 
software development organizations implementing the PACE strategy. However, those examples are 
focused on a single project at a time and do not incorporate many modern software development 
techniques. Building the Concept of Operations document was very useful in guiding the identification of 
areas in which conflicts had to be resolved. 

Integration Process 
We have specialized in introducing new technology into organizations for a number of years. Based on 
the experience from this engagement and many previous ones, we have evolved the following process for 
integrating an SPL approach with a product production strategy. 

1. Determine the basic assumptions and principles of each strategy – We create a partial 
description of the product production strategy, as implemented in the organization, which 
focuses on those areas that are important in the SPL strategy. As illustrated by the description 
of PACE in this paper, we consider 

a. the extent to which the strategy considers multiple products, 
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b. the techniques used to analyze for commonality and variability among the products, 
c. basic terminology, and 
d. the breadth of coverage of the strategy. 

2. Identify points where the strategies are inconsistent – We add to the description of each 
strategy an analysis of the differences in these critical areas as compared to the other strategy. 
For example, the product production strategy might not effectively handle variability.  

3. Hypothesize modifications to each strategy – We consider possible ways to resolve the 
differences by modifying each of the strategies. For example, the SPL strategy could be 
modified to ignore variability or the PACE strategy could be modified to add a variability 
model. 

4. Analyze the impact of each modification on the strategy – Each possible modification is 
analyzed for its impact on the ability of each strategy to deliver the expected results. For 
example, adding variability analysis to the product production strategy provides additional 
information and some additional overhead. Removing variability analysis from the product 
line strategy limits the team’s ability to understand the full scope of the functionality that 
must be produced and we note that this would limit the accuracy of development estimates. 

5. Create a unified approach – The interfaces between the two strategies are described in a 
section in the CONOPS. If variability analysis is to be included in the unified approach, we 
must define an interface with the product production process. Thus adding variability analysis 
to the PACE model provides additional information back to the PAC that is useful in 
allocating resources and making go/no-go decisions. 

Conclusions 
Software product line strategies are sufficiently comprehensive that they touch many aspects of the 
organization adopting an SPL strategy. Although this paper has examined the interaction of a single 
product production strategy with a single software product line strategy, it is often the case that a number 
of technical and organizational strategies may be affected. An interface must be established for each 
potential interaction. Software product line assets such as the CONOPS are useful in guiding this process. 

References 
[Chastek 02] Chastek, Gary; McGregor, John D. Guidelines for Developing a Product Line 

Production Plan, Software Engineering Institute, CMU/SEI-2002-TR-006, 2002. 

[Chopra 00] Chopra, Sunil; Meindl, Peter. Supply Chain Management: Strategy, Planning and 
Operations, Prentice Hall, 2000. 

[McGrath 96] McGrath, Michael E. Setting the PACE in Product Development, Butterworth, 
Heinemann Publishers, Boston, 1996. 

[Pande 00] Pande, Peter S.; Neuman, Robert P.; Cavanagh, Roland R. The Six Sigma Way: How 
GE, Motorola, and Other Top Companies are Honing Their Performance, McGraw-
Hill, 2000. 

 

18



Three Case Studies on Initiating Product Lines:
Enablers and Obstacles

Andreas Birk

sd&m AG, Industriestraße 5, D-70565 Stuttgart, Germany, e-mail: andreas.birk@sdm.de

Abstract

This position paper contains three case reports of projects in which software product line
engineering or some key principles of it were applied. From these cases, conclusions
about technical and organizational prerequisites for product line initiation are derived.

1 Introduction
Software product lines (SPL) promise high productivity and quality gains. But adoption of SPL
practices is not easy: Still relatively few people know the approach and trust into it, upfront
investments are required, and certain development process capabilities are mandated that are not
always among the standard practices of a software organization (e.g., systematic requirements
management and advanced configuration management). This paper tries to shed light on the factors
that can support or hinder the implementation of SPL in software projects and organizations.

Clements and Northrop [1] define a software product line (SPL) as a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed way.

What technological and organizational obstacles must be overcome for a project or company to initiate
and implement SPL? This paper addresses this question from the perspective of a software house,
sd&m,  that develops custom software solutions. The question is addressed through three case studies:
Two cases are about projects of sd&m where SPL was a possible development model but could only
partially be implemented. The third case describes a company-wide initiative of sd&m that has
established a generic SPL infrastructure. The infrastructure enables the development of custom
information systems for different clients as variants of one overall SPL. For each of the three cases,
the paper presents observations on enablers and obstacles of SPL. A final conclusions section
summarizes the observations.

2 Case 1: UI Framework Components
The first case is a project that developed user interface (UI) framework components for a new
generation of technical devices (embedded systems). sd&m's client develops and manufactures such
devices as an original equipment manufacturer (OEM) for its own customers. New products are
usually developed for one pilot customer and its specific requirements. Later, the product will be
extended and modified to suit the needs of additional customers.

Traditionally, variability of technical features across device variants for different customers used to be
quite low. Software development was reuse-oriented but would not qualify as SPL engineering. With
the advent of graphical UIs, a new key differentiating factor among the customer-specific product
variants has arisen. Every customer now wants its own specific graphical appearance and user
interaction, imposing new and highly complex requirements on software development.

sd&m became engaged when a new product generation had to be developed and the client did not
want to cover all development efforts itself. sd&m got contracts for some sub-projects, among them
development of UI framework components. Project responsibility of this sub-project was with sd&m,
in close collaboration with the client's overall project management and related sub-projects run by the
client or sd&m.
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The new system was developed for a new domain-specific platform that included operation system,
middleware infrastructure, and UI framework. The existing UI framework offered various useful
features (e.g., abstraction from device drivers and flexible changes between graphical styles). But soon
it became clear that the existing UI framework could not satisfy several important requirements of the
client and its customers. For instance, there was no support for animated graphical effects. So it was
decided to set up a sub-project to develop a specific set of own UI components. They had to be
integrated with the existing UI framework of the system platform. Application developers would later
use them to build user interfaces of different customer-specific product variants. The client viewed the
collection of new UI framework components as a core asset that ensures flexible and rapid
implementation of customer requirements.

SPL approaches were considered in the project in two respects: First, the UI of the final product (i.e.,
the embedded system) was a product line. The UI framework was the core asset of this SPL. Second,
the collection of individual UI framework components was developed as a small, project-internal
product line: It soon became clear to the development team that each UI framework component fell
into one of two technical categories, depending on how it had to interact with and comply to parts of
the existing system platform (e.g., registration at the UI manager, implementation of certain interfaces,
event logging). So the core assets were the generic components needed for developing UI framework
components as instances of each type. The core assets included code templates and associated
guidelines. They were developed before starting the implementation of the actual UI framework
components. Availability of these core assets helped the project very much to keep within schedule
and budget. It also ensured high quality of the components.

Observations
SPL scoping can be based on technology-focused assets.  - SPL scoping needs not focus on
application-oriented, functional commonalties of a family of software systems only. It can also address
technical aspects like communication patterns between components and event logging. In the case
presented above, such technical commonalties provided the basis for a SPL of individual UI
components (each having different functionality) that structured the development activities within one
development cycle (i.e., for developing one variant of the UI framework).  This technology-focused
SPL has proven highly effective for attaining short-term benefits within the project.

In some situations, an incremental approach to SPL scoping is mandatory.  - In the described
project setting, a pro-active scoping effort of the overall SPL of user interfaces for embedded devices
would not have been feasible. Rather, incremental scoping was mandatory. First, it was not possible to
access other clients than the current pilot clients. Second, the range of possible requirements that the
SPL should fulfil was so wide that it could not have been implemented while also fulfilling the hard
runtime and memory utilization requirements of the embedded device.

Need for supporting awareness-creation of SPL engineering at clients and project sponsors.  -
Project sponsors of the described project were very much interested into reuse. However, they were
not aware of SPL engineering, its potential, and prerequisites for its successful implementation.
Project schedules hindered project management to start comprehensive SPL awareness creation
initiatives. In this situation it would have been a clear advantage for the dissemination of SPL
engineering, if SPL dissemination material and business case descriptions could have been readily
available from the public domain. Despite our attempts, we have not been able to identify such
material.

3 Case 2: National Variants of Corporate-Wide Information System
The second case appears from the outset like a typical SPL example: The development of an
information system that had to be instantiated in about a dozen national variants in different countries.
It had to have a core that standardizes certain business processes of the national subsidiaries of an
international corporation. But every national subsidiary also required several country-specific
additions and variations (e.g., considering specific national laws, specific business processes that were
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rooted deep in the organization of the subsidiary, and constraints from neighbor systems with which
the new system had to interact).

This case description observes the project in a quite early stage from initial project set up to
completion of the business process modeling for the pilot client (i.e., one of the national subsidiaries).
However, already at this early stage, several factors could be identified that have impacted the
possibilities for SPL initiation.

Sponsor of the project was a central business department of  the international corporation. Its interest
was to standardize and unify the IT solutions existing in the various national subsidiaries. Each
subsidiary, however, operated as a widely autonomous entity. The subsidiaries were interested in
standardization, but each subsidiary also had its own specific objectives and requirements for IT
support. Some subsidiaries had just recently set new systems productive, while others were about
planning the substitution of legacy applications. Initiatives about IT standardization had to be triggered
by the central business department but decided in consensus across all major subsidiaries. Before
drawing IT-related decisions,  central department and each subsidiary had to consult their associated
IT departments, which sometimes had their own specific agenda. For this reason, decision making
about requirements and architecture of the new IT system required quite complex negotiations.

When sd&m was engaged for the project, it was decided that a new system had to be built. Several
further details were still to be clarified. So the project first had to scope the system and identify
requirements. One national subsidiary was willing to act as pilot client for the first instance of the new
system. They were about planning a new round of modifications to their existing system and did now
stop this in favor of the new system to be developed. Development of this first system instance was
roughly estimated to last 18 months with a peak team size of 15 persons. One other national subsidiary
agreed to serve as partner for analysis of commonalties and differences once the pilot client's
requirements were defined. The other subsidiaries could be accessed through monthly committee
meetings in which they could be asked to introduce specific aspects of their present IT systems and
business processes. Any closer collaboration with the subsidiaries was infeasible at this stage of the
project. SPL concepts were not known to any of the client organizations and did not find their way
into the project contract.

It was clear to the sd&m team that SPL engineering was the key model to system development in this
case. However, due to complexity of the development task and limited access to client sites, a
comprehensive scoping activity across several subsidiaries was impossible. Instead, the project
focused on in-depth analysis of the pilot client. Once the pilot client's requirements and preferred
system architecture were clear, a concurrent analysis of commonalties and differences to other
subsidiaries had to be set out. Although the initial project setting appeared to request a by-the-book
SPL approach including pro-active SPL scoping, organizational constraints made this impossible. The
project applied SPL principles wherever possible. But it was not perceived useful to introduce the
client organizations explicitly to SPL concepts, mainly for the reason that their interest was on
business concerns and they were not very familiar with software engineering and SPL concepts.
However, it would have been beneficial if it had been possible to discuss the benefits of SPL to the
project in more detail. The following observations summarize the experiences from this project case
for the application of SPL in such settings.

Observations
An incremental approach to SPL scoping can be inevitable in some situations.  - Whether to
perform SPL scoping pro-actively or incrementally is often a question of personal preferences or one's
willingness of taking risks in the expectation of great opportunities. In the case addressed here, there
was no choice: SPL scoping had to be performed in an incremental fashion. Identification of
requirements and comparative analysis of the situations at several subsidiaries were too complex and
expensive as if it could have been performed as a purely pro-active effort. Also the communication
and decision processes required to get a pro-active SPL effort approved by the sponsors would have
been too complex. The only feasible alternative was an incremental approach, starting with one pilot
client and gradually evolving the SPL core as additional clients are included.
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Systematic requirements engineering is a prerequisite for incremental SPL scoping.  - Incremental
SPL scoping places particular importance to advanced requirements management and engineering
practices. Some SPL core requirements from the pilot customer must later be revised and the SPL core
must be modified. This is only possible, when it is always clear what requirements are associated with
which parts and features of the system.

Awareness material on SPL engineering, its principles, and its benefits should be readily
available for attaining the buy-in of important stakeholders.  - The adoption of new technology like
SPL requires that awareness of the new approach is created within an organization, and that technical
competence can be built among all stakeholders. Decision makers want information about costs and
benefits of the approach, and technical staff demands information about software engineering
practices, tool support etc. In the case described above, like in case one, the sponsor organization
wasn't well aware of SPL engineering and its advantages. But the software project organization
couldn't provide the awareness material at the right point in time, due to lack of resources. With
appropriate information material readily available, for instance from the public domain, it could well
have been possible to root SPL engineering deeper in the project. Since this might happen in many
other projects as well, it could be worth starting a SPL community effort for creation of such
information material.

4 Case 3: sd&m Standard Architecture for Information Systems
The third case describes sd&m's initiative for defining a standard architecture of information systems
that eases the development of custom information systems. This apparent contradiction of developing
a standard architecture for custom information systems is actually a powerful application of SPL
principles to a family of functionally diverse software systems. The commonalties between the
systems are with their technical architectures: Many information systems have the same three tiers
architecture, use the same few database products, application servers, and client technologies, and
have similar technical links to neighbor systems. This is enough commonalty - besides all functional
differences between banking applications, production planning systems, etc. - to qualify for defining a
SPL based on technical systems characteristics.

sd&m's standard architecture for information systems, called QUASAR (Quality Software
Architecture) has been introduced by Denert and Siedersleben [2]. It is built on the distinction of
technical software components from application-dependent, functional ones. Each software component
should be designed so that it addresses either technical or application-oriented concerns1. This makes it
possible to define a generic systems architecture, which enables reuse across functionally diverse
custom software solutions.

The QUASAR set of reusable assets consists of the generic architecture, software frameworks and
reusable components, as well as various methods and processes. The architecture defines standardized
interfaces between technical components. For many interfaces, several alternative implementations for
different system platforms are available. The strong standardization of interfaces reduces dependencies
between components and fosters reusability. This is contrary to conventional frameworks that tend to
have extensive interfaces, which increase dependencies and reduce reusability. The methods and
development processes associated with QUASAR foster the separation of technical and application-
dependent concerns early in the development process. They map system requirements, specification,
and system architecture onto the generic QUASAR architecture. This provides the ground for
application of frameworks and generic components, and is the basis for well-structured and modular
high-quality system architectures.

                                                
1 There are exceptions from this principle, of course. Some software is neither technical nor application-
dependent. In other cases, both aspects can not be separated. For details see [2]. However, there must be clear
rules for such exceptions. Then it is possible to define a stringent generic systems architecture that is highly
reuse-enabling.
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The entire company staff is educated in the new standard architecture. Therefore, a series of lectures
has been set up, every software engineer receives hardcopies of technical white papers on the
approach, and the contents of the entire internal education program are aligned with QUASAR.
Knowledge brokers support application of QUASAR, and a staff of technical experts act as internal
consultants for the deployment of the software frameworks and generic components in projects.
Project reviews, which are performed regularly as part of the company's quality management system,
also check whether the projects take full benefit from the core assets provided by QUASAR.

QUASAR and its various supporting measures have been defined in a series of pro-active efforts of
sd&m's research division in collaboration with senior staff from all over the company. So the approach
integrates new architectural principles with proven and well-established development practice from a
variety of projects. Benefits of QUASAR include faster development cycles, faster and highly accurate
development of project offers, increased reuse rates (of software components, domain and technical
expertise, as well as the various work products of projects), higher staff qualification, and the gradual
establishment  of a SPL- and reuse-based development approach throughout the company.

Observations
SPL scoping based on technical aspects of software architectures is as least as powerful as
scoping of application-oriented functionality.  - QUASAR shows that SPL scoping needs not be
limited to functional aspects of a family of software systems. Also technical aspects of system
architecture can be a source of commonalties, providing the basis of a highly useful core assets.
Moreover, for sd&m's business (i.e., development of custom information systems), functionality-based
SPL scoping is virtually the only way to benefit from SPL principles and make effective reuse happen.

Pro-active SPL development can be performed in parallel with conventional development;
gradual migration to SPL-driven development can be reasonable.  - The QUASAR case shows that
SPL initiation can be performed in parallel with conventional development. This seems to be
applicable for every organization that follows a project-based development model. Projects are free to
decide when they find it most suitable to switch to SPL development. They also can do it in a gradual
manner, adopting only parts of the SPL assets at one point in time. A prerequisite is that the basic
systems architecture is compatible with the core assets' architecture. Such architectural standardization
might be much easier to achieve for the technical aspects of an architecture than for the application-
oriented, functional ones. The reason is that technical domains are generally more standardized (i.e.,
de-facto industry standards etc.) than application domains.

Active awareness creation and dissemination of SPL principles are critical for success; at some
point in time, demand for SPL engineering can become self-sustained.  - The QUASAR approach
is subject to comprehensive company-internal dissemination activities. These activities focus both on
creating general awareness and developing technical competence for applying the approach. As a
result, nearly every software engineer at sd&m has now basic knowledge of QUASAR. Project
managers are increasingly often experiencing benefits of the approach when they write project offers
or when concerned with technical project issues. This further fuels acceptance and actual application
of the approach. It seems that the initial dissemination efforts have created a basic interest into the
approach, which now unfolds its own dynamics and raises new demands for further information and
support.

SPL engineering must be anchored in a company's development processes.  - Much of QUASAR's
attractiveness is supported by the fact that it is not just an architectural framework with associated
software components, but that it is also rooted in the company's development processes and
recommended good practices. Guidelines and document templates have been developed for the early
phases of software projects, which help structuring software systems so that they comply with the
QUASAR architecture. So, for achieving smooth SPL adoption, the architectural SPL assets should
always be packaged together with associated guidelines, development processes, and support tools.
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5 Conclusions
This section derives conclusions from the observations made in the three case studies. Observations
focus on the key question of the paper, namely, how observed obstacles of SPL initiation can be
overcome. The observations are compared and generalized as permitted by the observed evidence and
their degree of dependency from specific situational characteristics of the cases described above.

Consider to build the SPL on technology-focused core assets instead of application-oriented,
functional core assets.  - This conclusion is supported from the experiences made in cases one and
three. Technology-focused core assets often allow for higher degrees of standardization, and SPL
scoping and core asset definition can be performed with less user involvement, which makes scoping
less expensive. Technology-focused core assets also allow for faster return of investment (cf. case one)
and can more easily be rooted deeply into the project's or organization's development practices (cf.
case three). These observations are also supported from another case study at sd&m [5], which showed
that standardization of application-oriented requirements for a client-side GUI framework was much
harder than standardization of technology-related requirements.

Investigate whether incremental SPL scoping will have advantages over pro-active SPL scoping.
- There is reported evidence that pro-active SPL scoping can create high productivity and quality gains
[1] [3]. However, case one and two show also that incremental SPL scoping can be mandatory in some
cases. Reasons can be limited access to customers (case two), difficulties in assessing the relevance of
future requirements (case one),  complexity of the task and/or project environment (case two), or
limited availability of financial or personnel resources (case one). Case one has also shown that
incremental SPL scoping has advantages for technology-focused core asset development in the context
of new technology. It can support the learning curves involved in mastering new technology and avoid
costly late modifications of the core assets.

When initiating a SPL initiative, incremental SPL scoping should be considered an alternative to pro-
active SPL scoping. Important prerequisites for incremental SPL scoping are mature requirements
engineering and change management practices,  and the ability of refactoring the core assets. Also the
SPL scoping method itself should be suitable. Schmid [4] argues that scoping methods sometimes lack
the ability of integrating new, project-specific objectives, and that they are not really replicable.
Integration of specific objectives and replicability are important prerequisites for incremental scoping.

Define usage support for core assets so that SPL engineering is deeply rooted in the development
practices of the project or organization.  - Cases one and three have shown that core asset should be
rooted in the project's or organization's development practices. Guidelines that explain how to use the
core assets are not enough. Instead, development practices should be defined or changed so that use of
core assets becomes the default development approach. The reported cases also show that it is well
possible to get new practices adopted by the staff. Once an new development approach has obvious
advantages and is supported by useful guidelines and tools, rapid adoption of the new practices should
not really be a problem. Both case examples also suggest that the investments for developing such
guidelines and tools can pay off quite easily.

Place strong emphasis on SPL awareness creation.  - Case three has demonstrated that it is quite
easily possible to create high awareness of SPL engineering throughout a development organization.
Prerequisite is the development or availability of appropriate awareness and dissemination material.
Cases one and two have shown that possibilities for SPL awareness creation among project sponsors
can be limited. One limiting factor is the availability of ready-to-use information material (e.g., slide
presentations and white papers). It would be desirable that the SPL community starts an effort for
developing such material and making it available in the public domain. This could foster the further
dissemination and adoption of SPL engineering throughout the industry.

In general, SPL awareness creation is particularly important when the core assets can be useful for a
large number of projects or a large community of software engineers. Like the adoption of SPL-based
development practices, also the initial creation of interest into SPL might never be a big problem when
the SPL approach and core assets are well-designed and their usefulness is obvious. Project sponsors
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as well as software engineers want their project be a success. They are generally open to every
approach that - like SPL - helps making for project success.
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1 Abstract
This paper describes the experiences with the introduction of a product line architecture in a multi
business line environment within Philips Medical Systems. In this product line the reuse percentage is
very high. The platform that implements the generic functionality covers a very substantial part (>
75%) of the functionality of all derived systems. For this project an architecture was created that
allows reuse of a software platform through binary extension. Technically this architecture relies
heavily on standard technology like Windows-NT and Microsoft’s component object model (COM).
Initially the product line introduction was organised  according to the AFE/ASE/CSE models as
described by Griss et al [4]. Furthermore a broad introduction was envisaged with the first release of
the product line covering multiple products. Major organisational difficulties encountered with this
model included: problematic decision structures in the multi-businessline context and subcritical ASE
projects. The project was therefore finally reorganised to a reduced scope with less business lines
involved. Our main conclusion is that for platform development in which such substantial parts are
reused a single business line organisation seems the most adequate solution. Furthermore the Griss
ASE/CSE organisational model is probably not very suited for this situation.

2 Introduction
2.1 The medical imaging market
Philips Medical Systems, a subsidiary of Philips Electronics,  is one of the worlds main vendors of
medical equipment. Its portfolio includes all types of medical imaging equipment like magnetic
resonance imaging (MRI), computed tomography (CT) and conventional X-ray. The product range
further includes patient monitoring equipment, medical IT-services and various other medical products
like resurrection equipment. The medical imaging market itself is a mature market with increasing
pressure on product development costs. The ever increasing software content of products, the
extensive maintenance phase and the relatively low production numbers are the main drivers behind
the introduction of product line architectures in this domain. This paper describes a recent introduction
of a product line architecture spanning multiple business lines. The paper will start with a short
overview of the products involved, the chosen architecture and the applied technology. The main focus
however, will be on the managerial aspects of the introduction. What organisational structure and
processes have been chosen and what are the experiences with these choices? How does this solution
differ from  the existing business line structure and how is the transform managed?

2.2 The products
Medical imaging products apply a variety of techniques to obtain images of the human body. The
classical examples of imaging devices are X-ray, magnetic resonance imaging (MRI), and ultra sound
equipment. Although these products are very different in hardware and physical techniques, they all
share the same global structure which is depicted in the following figure:
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Figure 2-1: Medical Imaging Architecture

As depicted imaging equipment is usually constructed out of 4 main subsystems;

• A host processor  that runs all application and user interface software and controls the peripheral
devices that are needed to generate, process and view images.

• Acquisition hardware like the transducer of an ultra sound system that is used for the generation of
medical images.

• Geometry, the mechanical hardware to support and position both the patient and the equipment.
• Image processor: Hardware and software that is used to process the images for optimal image

quality and diagnostic capabilities.

The host computer typically runs a desktop operating system. The peripherals are locally controlled by
embedded real time processors.  Note that these are usually very large systems including a lot of
dedicated hardware and millions of lines of code.

3 The product line architecture
3.1 Introduction, scope
A few years ago it was decided that a completely new product line was to be developed, which would
replace a number of existing products. The choice for a product line architecture was driven by a
number of factors:

• It was appreciated that the applications of these systems had become more and more similar
over the years.

• Software development had become by far the dominant discipline in the development of these
systems, software reuse was therefore key for future economic success.

• Technological advances made it possible to support the entire line with one sort of technology
although in different hardware configurations.

The scope of the product line was chosen in such a way that reuse would be maximised. For this
purpose a platform was developed containing all common hardware and software, which would be
reused as basis for all the derived products. All components used in more than one product were
included in the platform. As a result about 75% of the software was common over the various
products. The variation was located in about 25% of the software and in numerous supported hardware
configurations. The platform itself was reused as a binary component from which specific product line
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members were derived by adding specific components to the platform. See for a more detailed
description of this approach reference [1]. In the subsequent paragraphs an overview is given of the
product line architecture and the technology used in its implementation.

3.2 Architecture
The product line architecture of the systems under discussion has been described extensively in
various papers (see references [1]- [3]) and will therefore not be discussed in depth in this paper. It is a
layered architecture with the following structure:

• A technical layer that abstracts from the specific medical devices that are used in the application.
This technical layer serves as a  virtual machine to build medical imaging applications upon.

• The application layer that implements the actual end-user functions using the technical services
layer. The application layer interacts with the user interface through a model view controller
pattern.

• The User Interface Layer, the presentation layer of the system that determines the presentation of
data and controls to the user.

• Finally there is an infrastructure layer, that shields the operating system calls and offers basic
support classes for licensing, logging and other infrastructure to be used by all software.

For a more detailed description of the architecture see references [1] and [3].

3.3 Technology
The system is built around a standard PC that runs Windows-NT and hosts all the application software
(about 2*106 lines of code, that is written in C++) and the user interface software. A passive PCI
backplane with many slots forms the system control bus. The PC controls the standard PC-peripherals
and a number of dedicated peripherals, of which the control is integrated in the main cabinet. These
devices are controlled with an I960 Intel RISC processor running under the VxWorks operating
system. Other peripherals are connected through CAN busses and Ethernet. Other important aspects of
this set-up include.

• Use of standard middleware solutions (DCOM) for all interfacing.
• Use of standard software packages (database, license management, network) where possible.

For a more detailed description of the applied technology see reference [1].

4 Management aspects
4.1 Set-up
4.1.1 Introduction, organisational context

This paragraph describes the organisational context of the project where the following paragraphs will
deal with the managerial aspects of the development of the product line architecture. This last part of
the paper has been organised as a sort of historical report and does not only describe the final situation.
It also describes the modifications made in the processes and the organisation during the development
of the product line architecture and lists the main issues and problems encountered.
The products as described here were developed before in completely independent business lines.
Independent in the medical context means that they have their own marketing and development
departments, their own factory and above all their own financial responsibility. Note that these
business lines are also geographically distributed over multiple sites in different countries.
Furthermore it was decided that a  number of products were to be introduced simultaneously based on
the first release of the product line architecture. It should also be noted that there is no tradition or
history of platform development within these business lines. Up till now all products were developed
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as really separate entities with their own architecture and implementation. The only reused practised
on a larger scale was that of hardware components, that were developed in a “component” business
line.

4.1.2 Processes

The processes followed to develop the product line under discussion were originally  based upon a
approach as described by Griss et al. [4].  In this approach three main activities are distinguished:

• An Application Family Engineering activity (AFE) that defines the requirements, the
architecture, and the variation points for the platform. The architects that executed this activity
had full responsibility for the (technical) set-up of the platform, definition of the scope of the
platform (so what is generic what is specific in the range of products that have to be covered)
and the technology choices.

• A CSE (component Systems Engineering) process that is responsible  for the implementation
and test of the platform hardware and software. The CSE group also integrates peripherals and
software from many subcontractors into the platform. The CSE group delivers a tested and
integrated software platform and a number of hardware components that can be ordered. This
deliverables are not supplied directly to the market but to ASE projects.

• Finally there is an Application Systems Engineering activity (ASE) in which, the system
group derives a product from the platform and specific hardware and software components are
developed. This is also the activity that brings products to the market.

4.1.3 Distribution over organisational entities, project organisation

Historically the products that would be replaced by the results from the new product line architecture
were distributed over multiple business lines. Therefore it did not seem logical to allocate the AFE and
CSE activities that had to produce the platform to one of these groups because of the possible
conflicting interests in timing and priority. Furthermore this would probably jeopardize the interests
(and with that the support) of the other business lines involved. Therefore the entire AFE and CSE
activities were allocated to an independent business line that did not have direct market interests itself.
This business line was historically occupied with the development of hardware oriented components
for the various business lines. For this purpose a significant transfer of development budget from the
“product” business lines to the “component” business line took place.
Because the entire product had to be developed from scratch anyhow, the AFE and CSE activities
were run for the first release of the platform as a single project. This was clearly not intended to be the
final situation since the scope of the AFE activities spans multiple projects. Yet for the first release it
appeared to be sufficient. The architects of the AFE/CSE project defined the entire product line
architecture and the division between generic (CSE/platform) and ASE (specific) components. The
AFE/CSE projects defined the entire context  in which the derivation projects had to operate. The
ASE-projects were set-up as separate projects run by the various “product” business lines. These ASE-
projects developed the system specific items and did the integration and test of the final products.
They were also responsible for the marketing, introduction and production of the final products. For
these projects the platform was a “supplier”, that delivered a tested platform with all generic
functionality included. Note that the ASE’s did not have architectural responsibility themselves, they
were fully bounded by the architecture as laid down by the AFE-architects. This was reflected also in
e.g. the design documents of ASE projects that were all produced as “delta” documents. In these
documents was described how they used (configured) the platform and which specific components
they added to the defined variation points of the platform. Note also that the ASE projects were
considerably smaller (<40 FTE’s) than the CSE/AFE project ( a few hundred FTE’s). It was planned
that there would be a yearly release of the platform. Each platform release of which an increasing
number of specific application types (derived systems) could be derived. This approach is depicted in
the following picture:
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Figure 4-1: Product line organization

4.1.4 Staffing Aspects

The AFE/CSE project which developed the platform was a huge project (several hundreds of
developers) that had to develop both a large set of hardware components and millions of lines of code,
with the use of many new (at least for this organisation) techniques. Furthermore extensive application
knowledge was needed because the core part of the systems was now to be incorporated in the
platform. To cope with the increasing demand for software engineers with new technological skills, a
large hiring and training program was started. Unfortunately the project coincided with a major
economic upturn and a corresponding high demand for software personnel in general. It appeared
impossible to hire sufficient personnel and therefore a substantial part of the project (50%) was staffed
with subcontractors. This situation resulted in a very high turnaround rate of (especially software)
engineers within  the project. At worst the average dwell time of a software engineer in the project was
as low 18 months. It is clear that this situation negatively influenced the productivity. Note that
nowadays with less optimistic economic outlooks the stability of the staff has greatly improved, the
amount of subcontractors is diminishing and the average dwell time is growing at a high rate.
Application knowledge was brought into the project by moving a number of senior system designers
and developers from the “product” business lines to the “component” line. Apart from adding
application knowledge to the project this approach had another advantage. By moving the most
influential and knowledgeable persons, in many aspects the technical opinion leaders to the platform
group a lot of “resistance” was avoided. Yet it had one negative side effect. It made it very difficult to
motivate crew to work on maintenance and development of the “old” systems anymore. To much the
impression was raised that all the “best” people and the interesting work  would be in the platform
project.

4.2 Main issues, changes and problems
4.2.1 Organisational changes

The project(s) that developed the new product line architecture and components did not operate in a
fully stable environment. As usual both management insights and market circumstances evolved
during the project. Over time, this lead to two major changes that disturbed the project considerably.
After about one year management decided to extend the scope of the product line towards low end
products and other application areas far beyond the initial intentions. Apart from the required technical
change with main issues in the cost engineering area, this also increased the organisational complexity
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of the project. The number of business lines involved in the project was extended with two more.
Moreover the geographical distribution of the project was extended to multiple countries. This greatly
increased communication and travel overhead. Furthermore it was impossible to repeat the action of
moving all “important” people to the component group. Another effect was that the “new” business
lines had to join a project already under way for over a year with many of the important technological
decisions already taken. This lead to considerable acceptation problems and a strong drive to reopen
all discussions, with consequent delays in the project. Some time later the project was again shaken by
a major change in direction driven this time by strong market pressures. Now the introduction of a
system at the other end of the spectrum needed very high priority. The inevitable large delay in project
completion finally lead to a redefinition of the entire program. The scope of the product line
architecture was again reduced to almost its initial width. Furthermore the introduction of systems
based on the platform was scheduled in a much more gradual way. In the first release of the platform
only the highest priority system was introduced. The following release extended the number of
products supported with only a few and so on until in two or three steps the full product range will be
reached. Another major change was the removal of the difference between ASE and CSE projects. In
actual project execution the overhead of project-project communication, the dependencies and the
frequent discussions about responsibilities appeared to be to high. Furthermore because of the
dominant size of the CSE activities, the ASE activities became subcritical in staffing. Another effect
was that testing of the platform, which covered > 75% of the total system,  was only possible by using
an application as vehicle. The combination of these issues led to a major change of organisational
approach in which the original model was abandoned. Nowadays the entire program is run as one
(multi business line) project. Each release of the product line architecture project is responsible for the
entire chain until release of products. For every release of the product line architecture the supported
number of  products is increased. This new approach  now appears successful where the first releases
of the platform have been completed with an increasing support for actual applications.

4.2.2 Decision structure

From the beginning, one of the key problems in the project was its decision structure. Historically
development projects interacted with their own marketing and sales group in the definition and
planning of projects. Conflicts and problems could usually be solved easily since both departments
shared a mutual understanding of budget and staff restrictions and the market situation. Now this
situation had become much more complex, since the project had to deal with several customers. The
initial solution to this was to work with teams like a marketing team that included representatives of
all involved business lines. This worked fine as long as the differences in interests between the
business lines were small.  Whenever this was not the case the only way out was escalation to much
higher levels. Where in the single business line case marketing and development usually came to an
agreement without any higher management interference this appeared to be almost impossible in the
multi business line case. This appears to be caused by two major points:

• Business line tried to get the most out of the platform effort it at the expense of the other lines.
• Since there was no real financial feedback, the component group had a fixed budget and operated

as a cost centre, there were no restrictions in the issuing of requirements

The root cause of all these troubles appears to be the absence of a good decision model for the
platform activities. The simple customer-supplier relationship breaks down because there is not really
an open market. There is only one producer and a few consumers which do not have any alternative
sources. Several solutions have been exercised to improve this situation. The most successful was the
use of champions, appointed authorised decision makers within each team. This worked reasonably
well in areas were widely (over multiple business lines) respected  and knowledgeable people were
available.  This brought down the number of “escalation” points considerably. Yet in  case of strongly
conflicting interests between business lines or in the absence of such a person only strong higher
management force and attention is still the only solution.
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5 Conclusions
It is of course very difficult to generalise the experiences of only one case even if it is of this size (a
project of more than 1000 man-year). Furthermore many of the conclusions may seem obvious. In
retrospect it is hardly surprising that changing the direction of such a large project several times
introduces significant delays. Furthermore managing projects of this size is difficult anyhow and
subject to delays even if not concerned with product line introduction. Maybe  the staffing approach
may be considered interesting to others in the process of introducing product line architectures.
However the project did finally manage to successfully introduce the products based on the product
line architecture. So  there must be few lessons in this approach for product line architecture
introduction in a multi business line environment in general. Note that I assume that the conclusions
are only valid for a comparable situation in which a very significant (>50%) part of the system (in this
case it is even > 75%) is generic. Our conclusions fall apart in two groups

• The first trivial conclusion from our experience is that the organisational aspects are much more
complex than the technological and architectural issues in a multi business line environment. This
conclusion has major consequences for the scope of a product line. Organisational complexity is
strongly influenced by the number of business lines involved in the effort. Much more than
technical complexity this should therefore be a consideration in defining the scope of the product
line architecture.  The creation of a business and decision model, that defines how the various
interests will be judged and how a final decision will be reached on aspects such as specification,
architecture, planning needs to be defined up front. Although we have gained considerable
progress with the “champion” model we did not find a really satisfactory solution for this problem.
One might therefore consider to reorganise the business lines up front to another organisational
form in which a simple decision model is guaranteed, e.g. by combining business lines that have to
work with the same platform.

• If the product line covers very substantial parts of the products inevitably the responsibility for
architecture, development and integration shifts to a central platform group. This has significant
impact on the organisation and staffing of the involved business lines. Much smaller development
departments are now needed. The actual responsibility will shift from basic development to
application integration and testing. From the experiences in this product line effort it appears that
the ASE/CSE model as proposed by Griss et al [4] is not very suitable as an organisation form for
this situation. A single project approach in which each subsequent project is responsible for
“keeping all existing products running” seems to work much better.
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Abstract

Fundamental to the success of a product-line strategy is having some means to attain the global ar-
chitecture that all products will share. Migrating to the architecture is often perceived as a difficult part
of implementing the strategy. However, the technique presented here permits a low-risk, incremental de-
velopment of the architecture via a process of negotiation. In effect, small scale product-lines are set up
to supply products of a particular type to other systems. Stakeholders of the systems come together to
negotiate an interface to the product and define it in an abstract form. As these small scale product-lines
increase in number to cover most systems’ entities, their collective abstract interfaces start to define the
product-line architecture.

1 Introduction

Using a software product-line means employing a ‘shared architecture and a set of components’ [2]. How-
ever, getting one project to share another’s architecture can be difficult, particularly when a company has
previously organised its software development on a project-by-project basis. While progressing towards
a single architecture for all products, the implementation strategy can become entangled in the need for
generic requirements to be defined as part of an ‘upfront’ analysis. There is also a belief that the new
architecture must attempt to encompass all foreseeable variation in future products and that this is only
achievable via a lengthy and expensive commonality / variability analysis. This may be true to a degree, but
gives the perception that implementing a new product-line provides uncomfortable hurdles in terms of the
amount of process re-organisation required.

This paper puts forward the opinion that a product-line strategy can be implemented with minimal
impact to ongoing projects while still laying a good foundation for future product variation. It shows a low
risk method to obtain a product-line architecture in an OO (object-orientated) environment, giving specific
examples from C++ . The technique illustrated encourages the transmission of expertise across projects
and allows the architecture to be developed over time. This incremental development of the product-line
architecture means that metrics can be applied at an early stage to evaluate the strategy before substantial
investments in process alteration are made. The technique also has the advantage of being easy to understand
and apply. The fundamental principle is simply:

encapsulate and abstract an interface to entities which could serve in other systems.

This principle assumes the same basic entities (in our case, C++ classes) are common to the systems in
question, even though they may vary greatly in their implementation. For example, a Maintenance system
will always require some means of recording and reporting faults. By drawing a functional boundary around
those areas, we can look at how these entities can be supplied to systems with a consistent interface.

The first step is to propose an abstract interface which all implementations will share. This abstract
interface needs to be negotiated with teams working on other systems that may (or already) use a similar
entity as part of their subsystem. The process of negotiation defines the interface to be shared by a mixture
of common needs and consensus.

35



Products are the concrete implementations of points of variation within a product-line architecture. Prior
to them being elevated to this position however, they are first proposed as points of variation in a class model
for a particular project. Having abstracted their interface, the areas for negotiation with other projects are
easy to identify. Cross-project negotiations over these shared interfaces can be planned during the modelling
stage and budgeted as external to the current project.

The wordentityis used throughout this paper to refer to a bounded element of functional decomposition.
While we are in the main referring to C++ classes, such a functional ‘block’ could equally be a Matlab
Simulink subsystem block. What is important is that the functional boundary that captures the level of
reuse is broadly similar on both projects. One advantage with C++ is that the abstraction is part of the
language and adherence to the interface can be enforced by the compiler.

1.1 Related Work

The ideas in this paper follow on from work on product-lines by Jan Bosch [1, 2, 15] and papers presented
by David Sharp at the Software Technology Conference on the potential for design patterns to be used
with product-lines [6, 10]. There has already been work done on the need for product-line architectures to
manage product variation effectively [8, 9] and this paper acknowledges the importance others have placed
on establishing a global product-line architecture [3]. Providing an ‘upfront’ analysis to give insight into the
commonality and variability of products was addressed as part of a previous study in the domain [11]. The
technique advocated here builds on recent work by the University Technology Centre (UTC) in Systems
and Software Engineering here at the University of York [5, 12, 13].1

1.2 Problem Context

This paper takes as an example the Maintenance subsystem of the Rolls-Royce family of civil aerospace
engines. A Maintenance subsystem is embedded software in a safety-critical, real-time environment. The
company aims to move its engine Control System software development towards a product-line strategy in
order that greater re-use is made of existing solutions for previous engines. Essentially, the Maintenance
subsystems on these engines do not vary greatly in their functionality from engine to engine, and as such
would seem a good basis for a software product-line.

Current projects are using a mixture of model-generated C and handwritten C++ code. Having OO
allows us to use a variety of existing design patterns and one of these, the AbstractFactory pattern [7],
is ideally suited to the implementation of product-lines. The example shows how to apply the pattern to
existing entities in a class model of the subsystem. It gives guidelines on how to ensure a product-line
approach is taken, rather than one which will be hampered by the demands of the current project.

2 Defining the Entities

The Maintenance subsystem of an engine receives and acts on being notified of faults by the operating
system (OS). After checking and validating the fault, it writes the current inputs to an area of non-volatile
memory as a snapshot and generates the appropriate message which may or may not be sent to the main
on-board computer. The principal processing parts of the subsystem are in the application of combinatorial
logic to validate the fault in the contexts of other faults, dispatchability (time allowed until a fault is declared
valid) and suppression rules that determine whether a message will eventually reach the cockpit or not.

While there is considerable complexity in the Maintenance subsystem, the functionality can be encom-
passed in relatively few entities. According to OO principles, keeping objects aslightweightas possible (to
contain minimal functionality) is better in terms of future maintainability. However, it can lead to a prolif-
eration of classes in the design and this could have an impact on projects trying to share common interfaces.
The more interfaces there are, the more restrictive the overall design becomes and this is a particular concern
for product-line architectures.

Given existing built-in test equipment (BITE) specifications, the two obvious candidates to match real-
world objects with classes were faults and messages. The management of objects created from these classes

1References [5, 12, 13] are only available from the UTC with the permission of Rolls-Royce (UK) plc.
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Figure 1: Simple maintenance architecture

could be done using the well-established pattern offactoryclasses following standard OO practice.2 The
resulting model of a somewhat simplified Maintenance subsystem is set out in Figure 1.

3 The AbstractFactory Pattern

The AbstractFactory pattern was envisaged as a means of enabling different implementations of the same
functional requirements to be built within a common architecture. Importantly, it encouraged development
towards abstract interfaces, rather than implementation specific routines that executed similar functionality.

The pattern allows for any number of products to be created. Which product is created depends on
which concrete factory is instantiated previously by the client. However, by using abstract base classes with
pure virtual functions, the same code can be used to create products of different types. The client simply
calls the interface provided by the AbstractFactory. It does not need to worry which concrete factory will
actually instantiate its own version of the product.

3.1 Applying the AbstractFactory Pattern

The AbstractFactory pattern can clearly find an application in a product-line approach to the Maintenance
subsystem. Two things are needed for such an approach:

• A commitment to a single, shared architecture for future Maintenance subsystems;

• A belief that the same fundamental entities of a Maintenance subsystem will continue to be present
in future designs.

The latter point is less important than the first, given as we shall see, that entities can be moved gradually
into product-lines. However, without the first, a product line isn’t possible. Without the second, there is
no incentive to create a product-line. Our approach was simply to consider each of the principal entities in
the class model to be candidate products or (product factories) in a Maintenance subsystem product-line.
Essentially, applying the principleabstract and encapsulate any point of variationto each entity in the
model will give the same result, the AbstractFactory pattern merely provides a recognised framework for
generic code to compile different concrete implementations.

2Feedback from the company has suggested that ‘factory’ is not a good name for such classes in safety-critical applications as it
implies objects can be created dynamically. As no dynamic memory allocation is allowed, their role here would be limited to the initial
creation of objects and perhaps some means of providing access to those objects.
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Figure 2: FaultFactory and fault classes, showing implementations for other engines.

3.2 Electing Suitable Entities

If we assume the next Maintenance subsystem will be virtually unchanged from Figure 1, other than being
specific to that engine in its implementation, we can assume these same entities have potential for re-use.
An attractive aspect of the AbstractFactory pattern is that it can be applied to a single entity in a subsystem
design. That entity can form part of ‘mini product-line’; in effect, a product-line that suppliespart of a
larger subsystem with a product. As the design matures, the abstract interfaces to the small scale product-
lines gradually define the wider product-line architecture. However, by keeping them small and applying
the abstraction to single entities at a time, the architecture can be kept flexible during its early stages.

The transparent classes in Figure 2 are abstract base classes, with thecapabilityof the AbstractFactory
class (i.e. the products this product-line can produce) defined as pure virtual functions.3 These abstract
interfaces must be negotiated with other project teams who may make use of the product-line to supply
them with the entity concerned. The negotiation process is covered in greater detail in§4.2.

As the number of products increases and more engine variants are brought in, the complexity (and
rigidity) of the model also increases. However, the more products that are defined in the product-line, the
more reuse is achieved. Some tangential benefits include:

• greater robustness of the architecture as it matures to accommodate more engines

• greater awareness of commonality in requirements as expertise is shared amongst developers

• adherence to the product-line interface means many design considerations are already approved

4 The Specification of Abstract Interfaces

Much of the success of product-line implementations depends on the ability to foresee points of variation.
The anticipation of likely variation points has always been a difficult design issue and designing for potential
change has been the motivating force behind the introduction of OO techniques. However, OO techniques

3The (virtual) function calls illustrated in the models are not taken from any existing code at Rolls-Royce and should not be
considered representative.
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have tended to concentrate on achieving flexibility and reuse at a localised, low level in design. The product-
line approach can be seen simply as a means to produce different but related products. Thus flexibility and
reuse are considered at much higher levels than traditionally. However, previous product-line studies have
emphasised the need for a detailed commonality and variability analysis of potential products[2]. Carrying
out such a study can be expensive and time consuming. The need for an incremental product-line strategy
stems from companies being unable to commit resources to a full-scale, upfront analysis of their product
families. Where resources are not available, the incremental approach provides a low risk and relatively
inexpensive alternative to implementing a product-line from the base-line of an existing project.

Our view equates products with variation points in the product-line architecture. The initial focus on
starting a new project is therefore towards a breakdown of the basic constituents of a subsystem. Once the
entities are roughly defined, each entity has the potential to become part of a mini product-line that supplies
variants of the entity to the Maintenance subsystems of future engines. It is the responsibility of the new
project to decide whether a particular entity can find a place in future systems. If the engineers believe
so, they raise it with a product-line co-ordinator (whose role is described later) who can take the proposal
forward with other projects.

This approach means that product-lines can be thought of as small scale, lightweight (in terms of pro-
cess) and introduced as convenient to the project concerned. It is important that deadlines and ongoing work
for the new project are not disrupted by the project having to bear the brunt of the re-organisation necessary
to implement the product-line. The Maintenance subsystem of the next new engine might only agree to
share the message handling or fault handling products of the Maintenance product-line, as the remainder of
the generic subsystem is too different to be accommodated. There is no requirement for a new engine to be
included in an ‘all or nothing’ approach. Inclusion can be partial, but the benefits of improved process and
cross-project understanding for that part of the domain will still be valuable.

4.1 Specification of a New Product

Once the basic entities of a subsystem have been defined, thought should be given to how these entities
could be supplied as products from a product-line. Using the AbstractFactory pattern, the abstract interface
specification declares the product’s interface in the form of pure virtual functions which a client can request.
The product itself should have an abstract interface to allow it to be classed as a type so that the client can
instantiate it without worrying about its specific nature.

It is not recommended that every detail of an existing implemented specification is brought to the ne-
gotiation table to discuss its abstract specification with other projects. A product-line needs to be able
to encompass the variability of the products it supplies and an excessively detailed interface specification
would prohibit this. The recommended stages of the process are:

1. A short proposal suggesting the entity’s functionality could be common to other subsystems;

2. A brief discussion of the entity’s functionality within a subsystem;

3. A proposal that the entity could be supplied to future subsystems as a product via a product-line;

4. An inter-project request for a meeting to discuss the shared abstract interface of the product.

Proposals like this, carried out during a current project, require a budget (and time) set aside for product-line
work. The Maintenance teams on all projects would book time to the same cost code for this work, and
members of different teams should report to the chief architect or product-line co-ordinator as they make
proposals for the product-line. It is essential that no one project takes the entire burden of setting up the
product-line and the specification of the abstract interfaces. Indeed allowing one project to do so in the
absence of other projects’ representatives is likely to result in an inflexible interface due to the likely bias
towards that project.

4.2 Negotiating the Abstract Interfaces

Once a meeting has been agreed for the proposed product and product-line, development teams with relevant
domain experience should attend the meeting to discuss the degree of variability that the products could
have. Even if these teams are working on mature subsystems rather than new implementations, they are
likely to have valuable experience relating to previous changes in their requirements. They may further
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have suggestions on the weaknesses of current designs or implementations that have caused maintenance
difficulties and these considerations should be brought to the meeting to help define an abstract interface
that is agreeable to everyone. A checklist for such a meeting should ensure;

• the entity can form a part in future subsystems

• the abstract interface is acceptable to all stakeholders

• the abstract interface of the product is unrestrictive in terms of the expected concrete implementations

• the abstract interface can be traced to generic requirements for all projects

Depending on the degree of commonality that can be agreed between the project teams, the abstract interface
can be very simple (maximum implementation flexibility) or well-defined (restrictive implementation, but
providing better levels of reuse). These needs conflict, and some projects may be unhappy with the prospect
of having to use a tightly defined abstract interface. In this case, and perhaps while the product-line is
relatively immature, it may be safest to keep the interface specification to the bare minimum in order to
ease the negotiations. As the product-line and the process of negotiation matures between the teams, more
commonality is likely to be found and agreed on, and this can be added to the existing interfaces.

5 Introducing the Technique on an Existing Project

One of the main advantages of the technique given in this paper is the possibility of applying the pattern to a
single entity at a time. This permits a low-risk migration towards a product-line strategy and allows the onus
of developing the product-line to be shared between projects. Maintaining a series of mini product-lines
is easier if the processes for doing so are built up gradually, with people learning from their mistakes and
making improvements on the process.

Starting with a single entity also allows metrics to be brought in earlier, so that reuse can be monitored
and the benefits assessed. However, it should be noted that serious consideration of the metrics gathered
before the product-line matures (i.e. after several products have become available) might provide mislead-
ing data. The principal benefit of getting metrics in place early is that a process can be established and
consideration given to what exactly should be measured. After these are in place, data can be gathered
with greater confidence once the next project uses the shared interfaces and architecture. The steps can be
summarised as follows:

• A product-line co-ordinator is appointed — this could be the chief architect, for example;

• The development team selects a single entity as a candidate product for future subsystems;

• The team goes through the specification process outlined in the previous section;

• The product-line co-ordinator works with the team to set up meetings with developers from other
projects so that the process of negotiating the abstract interface can begin;

• After the abstract interface is agreed, it should be published and all projects informed;

• The reasoning behind the proposed abstract interface must be clearly documented;

• Generic requirements should be established that reference the product-line structure so that current
and future projects can trace the reuse intention specified by the abstract interface;

• Work on the concrete implementation of the product for the current project can then begin, this work
is costed and carried out by the project team that made the initial proposal.

During this process, it is likely that the current project team will have the greatest say on the abstract inter-
face specification, as their project has the foremost need of being completed on time. It is the responsibility
of the product-line co-ordinator and other teams to ensure that the proposals of the current project team do
not impose an interface that is likely be restrictive in terms of their experience. They should bring their
own projects’ requirements into the negotiations as if they were currently relevant, or at least use their
knowledge of requirement change requests to indicate the most probable variation that could occur from
one implementation to another. There are many aspects to product-lines which remain undetermined, but
by trying out the process on just one or two entities, the risk of major costs being spent on a process that
later fails to give real benefits is kept as low as possible.
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6 Conclusions

This paper has shown how a product-line can be developed in a C++ OO environment. The technique
provides low risk and low set up costs. The basic principle ofencapsulate and abstract points of variation
is simple, and providing a product-line co-ordinator has been appointed, the following stage of abstract
interface negotiation is straightforward. The process has the following advantages:

• a low risk, minimal impact migration towards a product-line strategy

• cross-project negotiations over the shared interfaces are easy to identify, plan and budget

• transmission of expertise across projects as the product-line process matures

• incremental definition of the architecture allows early metrics for pilot projects

• start up costs, design and development for new products are reduced

It is important that developers realise the entities they design could be products in a product-line of use
to other development teams. They should raise queries over potential products with the product-line co-
ordinator or chief architect, who would then take on responsibility for managing the specification and nego-
tiation of the interfaces, while the developer is able to continue their localised work on the current project.
This seems to be a way of developing product-lines within an organisation without undue disturbance to
ongoing projects. Project start up times should also improve, as much of the infrastructure to an entity
should have been queried and put in place as part of its abstract interface specification.

6.1 Issues

As the process and product-line matures, the abstract interface specification to a product becomes larger and
less flexible. Variant products struggle to fit within the shared architecture. At such a point, the product-line
co-ordinator needs to review whether the variation is such that a new product-line may be warranted. By
keeping the product-lines on a small scale, the risk of moving outside a mature product-line architecture is
minimised. If it is unavoidable, the cost of doing it is lower.

Like all patterns that rely on inheritance as part of their reuse, requiring a change to the abstract inter-
faces can pose technical and managerial dilemmas. It is difficult and inconvenient to change an interface
which as been used by several concrete implementations. The amount of code to change may be consider-
able if there are many layers of inheritance. Secondly, each implementation that used the original interface
will need to be re-tested. If changes to an interface affect a lot of code, it may simply be easier to extend the
interface rather than alter it. Extension can take several forms; parameter extension and interface extension
are both permissable, though not in all circumstances. Parameter extension is possible where overloading
is permitted. This allows additional parameters to be added and the compiler distinguishes the function as
overloading a previous one defined higher up the hierarchy. Interface extensions can also take the form
where another product is added to the abstract specification and existing implementations would then need
to implement it. Unfortunately this last solution may not be allowed where no redundant code is permitted
in the application, as such extensions may result in ‘dummy’ code being written to fool the compiler that an
existing implementation matches the interface specification.

Given the difficulties of changing abstract interfaces where product-lines have been built up over time,
it is essential that interfaces are proposed which are as flexible as possible so that they minimise the risk of
requiring alteration. If cross-project negotiations are carried out which utilise the collective experience of
those projects, there is every chance that the abstract interfaces will be flexible enough to cope with future
variation of the entity. If the cross-project negotiations are weak, or unbalanced in favour of a particular
project, then there is a danger of an interface being too specific to one project to be of use to other projects
in later years.

6.2 Further Work

Clearly product-lines fit comfortably with the application of standard design patterns like the AbstractFac-
tory pattern. However, much of that ease comes from the use of OO features like inheritance, and the ability
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to not only specify abstract interfaces, but to do so in a way which forces their implementation if a sub-
class inherits their interface. This bond between the abstract interface specification and the derived concrete
implementation is of great value when ensuring standard solutions are built across the company.

Given the benefits of the approach outlined here, the next question to tackle is whether we can find a
similar means of architectural specification for modelling tools such as Matlab Simulink and Stateflow. The
difficulty here is to apply the same OO principles of abstraction and encapsulation to a toolset which is
procedural both in its modelling tradition and in its model-generated code output. There are a number of
possibilities that can be investigated in the immediate term. One is the possibility of treating outer Simulink
blocks as ‘wrappers’ which depend on inner blocks to complete their functionality. Such wrapper blocks
could be specified as abstract interfaces by using data input / output sources. Another alternative is to
specify configurable sub-blocks as the abstract interfaces. The options provided by the configuration tie up
the data sources automatically.

A common means of specifying variation points as products that form part of a shared architecture
will add value to any company that uses a mixture of procedural and OO code. The method given in this
paper achieves this for handwritten C++ code. The challenge now is to move the idea of abstract interface
negotiation into the wider arena of model-generated, procedural code.
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Abstract. The effectiveness of a software product line depends on the 
effectiveness of the abstractions used to manage it.  Salion uses a combination 
of technology and vigilance to elicit emerging abstractions in its software 
product line.  The result is greater commonality, more concise variations, and 
faster time-to-market for new product family members. 

 

1. Introduction 

The effectiveness of a software reuse technique depends on the effectiveness of the 
abstractions employed.[1] Since software product line approaches gain their benefit 
from large-scale software reuse, the effectiveness of a software product line will 
likewise depend on creating and maintaining effective software product line 
abstractions. 

 
Salion uses technology and vigilance to aggressively search out and refactor 

abstractions in its software product line. As a result, Salion optimizes its software 
product line through greater commonality and more concise variations.  This provides 
faster time-to-market for new products, lower development costs, and higher software 
quality. 

 
One example of eliciting software product line abstractions is described in this 

paper.  This case identifies an emerging abstraction in a variation point that reduces 
the lines of variant code per family member from an average of 1600 to 250. 
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2. Technical Approach for Eliciting Abstractions 

During the normal evolution of a software product line, variations are often 
introduced to provide greater flexibility in the product line or to expand the scope of 
the product line into new areas.  This generally leads to both the introduction of new 
variation points and the growth of variation inside of existing variation points. 
 

This tendency towards increased variation reduces the ratio of common software to 
variant software and thus reduces the effectiveness of software reuse in the product 
line.  That is, there is a natural entropy, or tendency for divergence, that occurs during 
product line evolution. 

 
To counteract this entropy, vigilance is required to constantly search for existing or 

emerging abstractions in the variation points.  Once identified, these abstractions 
enable the variations to be refactored into greater levels of common software and 
more concise variant software, thereby increasing the levels of reuse in the product 
line. 

 
Experience at Salion has shown that appropriate software product line technology 

can help to elicit abstractions.  The first technology example is software product line 
infrastructure that clearly encapsulates variation points in the source base of the 
software product line.  For example, Salion uses the GEARS software mass 
customization infrastructure from BigLever Software.[2,3,4]  GEARS provides 
explicit constructs that encapsulate and localize source file variations in a software 
product line.  The lead architect at Salion routinely scans through the variation points 
in search of existing or emerging abstractions. Without the explicit and localized 
encapsulation of the variation points, it would be considerably more difficult to know 
where to look and what to compare in the search for abstractions. 

 
The second type of technology that aids in the elicitation of abstractions is software 

comparison.  A simple example is the conventional UNIX diff.  It can be used to 
search for cut-copy-paste clones within a variation point.  More advanced structural 
abstractions can be found using a tool such as the CloneDoctor from Semantic 
Designs.[5]   Salion uses this tool to search for structurally similar abstractions both 
within and among different variation points and common software.  CloneDoctor is 
able to find abstractions from similar but not identical software fragments that often 
result from cut-copy-paste-modify during development. 

 
Experience at Salion indicates that at least one engineer must be committed to the 

task of eliciting abstractions from variation points.  Many engineers developing 
software in variation points will not have the time, skill, experience, or interest to 
search out abstractions.  Without vigilance by skilled architects or generalists, entropy 
will take hold within the variation points and the effectiveness of the software product 
line will degrade. 
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3. Case Study 

Development on Salion’s product suite began with little customer input. The system 
was designed based on knowledge gathered by initial market research, customer 
demos and industry experts. Consequently the software design had to be robust in the 
face of certain change. Salion’s development team adopted a component-based 
development practice, an agile development process, and a reactive software product 
line approach from the start.[6,7] 
 

As the first few customers were deployed from the product line, the variation 
points of the system began to stabilize.  Analysis showed that previously unseen 
abstractions were emerging within the variation points. 

 
In one example, a developer had created a variation point that encapsulated 

variants of a façade object used by user interface developers. The façade handled 
complex logic revolving around versioning, database operations, and view helper 
objects.  The first façade variant implementation required 1600 lines of code.  After 
realizing that much of the code would be identical for each variant implementation, he 
began to search for an abstraction. By applying diff to two variants, the common code 
was moved into an abstract superclass outside of the variation point and the façade 
variants were implemented as subclasses in the variation point (see Figure 1). The 
Template Method design pattern was applied to the superclass so that subclasses were 
required to implement only one method, but if required they could override three 
more.[8] 

 
Because unit tests were already written for the two façades, refactoring the 

abstraction out of the variation point took only two days (including testing). The 
developer and a co-worker (who had been assigned to the next façade variant 
implementation) conducted a pair-programming session. The benefit of pair 
programming on the façade variation point refactoring task proved to be invaluable. 
First, the co-worker learned the design strategy of the superclass and the 
responsibilities of the subclass. Second, bugs were spotted earlier and more unit tests 
were written as needed. 

 
Once the abstract façade was implemented, the first façade variant was reduced 

from 1600 to 600 lines of code (LOC). The second façade was implemented in 30 
LOC (constructors were all that were needed); the third façade was implemented in 80 
LOC and the fourth in 400 LOC. By abstracting code from a set of variants in a 
variation point, a usable and practical framework emerged. 

 
Inevitably, as soon as the product line was put into production, a bug was found. 

The source of the bug was traced to the abstract class, so a single fix was 
automatically picked up by all product flavors. If the same bug had been found in the 
original implementation, the fix would have been required in each variant (assuming 
the developer remembered to do them all). 
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In general practice, the Salion software architect is able to continually monitor the 
software product line for emerging abstractions in the variation points, first by visual 
inspection and second by applying code diffs and clone detection technology. 
Because GEARS isolates variations in subdirectories, variations for a common 
abstraction can be easily and efficiently elicited. 

 

AbstractRFQFacade

createRFQ()
createNewVers ion()
getRFQViewHelper()
assembleRFQViewHelper()

RFQFacade

Y.java

assembleRFQViewHelper()

<<variation>>
Z.java

assembleRFQViewHelper()

<<variat ion>>X.java
<<variation>>

<<actuates to>>

<<actuates to>>

<<actuates to>>

Provides common methods to handle complex 
versioning business logic, view helper 
assembly and CRUD operations.

Some template methods are provided for 
subclasses to be called within the 
transaction-safe also provided by the 
superclass.

Only one template method is provided for the 
example: assembleRFQViewHelper()~ 700 LOC

~ 30 LOC

~ 400 LOC

~ 500 LOC

Variations are created on the one and only 
subclass. Clients may always rely on an 
RFQFacade being present in the system.

Variations between product flavors for managing 
RFQs are minimized in variation points managed 
through GEARS. Complex facades are at most 500 
LOC, as opposed to 1500/1700 prior to refactoring 
out a superclass.

 
Figure 1 
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4. Conclusions 

Experience at Salion has shown that the engineering team must tightly control the 
natural entropy present during software evolution in order to maintain the 
effectiveness of their software product line.  One way to control this entropy is to 
constantly search out and elicit emerging abstractions in the variation points of the 
product line. The following technology and techniques in combination can 
accomplish this: 

 
• Encapsulated variation points, such as provided by GEARS, to clearly identify 

where to search for emerging abstractions 
• Diff and clone detection for mechanically identifying potential abstractions 
• Constant vigilance and a development process that promotes constant 

improvement through refactoring 
• Traditional object-oriented design skills and patterns 
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Product family development utili zes family commonali ties to enable fast and safe 
variant design and implementation. The family development approach can be put 
into action effectively with family-specific methods. A modeling language is defined 
based on the family characteristics. The language sets the variation space for 
designing family members and together with generators allows fast and highly 
automated variant production. This paper reports experiences and lessons learned 
from designing modeling languages and generators for automating product family 
development. 

1 INTRODUCTION 

Most domain engineering approaches (e.g. Arango 1994, White 1996, Weiss and Lai 1999, Kyo 

et al. 1990) emphasize language as an important mechanism to leverage and guide development in 

a product family. A few experts do the domain engineering creating a domain-specific language 

for designing family members and generators for their implementation. Once applied at the 

application engineering level, all other developers have the opportunity to focus on developing 

family members with models using directly product domain terms, from which the finished 

product can be generated automatically. The language (with supporting tools) shifts the 

abstraction level of designs from coding concepts to the product concepts, makes the product 

family explicit to developers and effectively sets legal variation space. Basically, domain 

engineering raises the abstraction for a single range of products. Similar upward shifts in 

abstraction have occurred in the past when programming languages have evolved towards a 

higher level of abstraction.  

Domain engineering is strong on its main focus, finding and extracting domain 

terminology, family commonali ties and variabili ties, but gives li ttle help in designing and 

implementing languages for the engineered domain. Typically, it offers some parameters of static 

variation, but behavioral variation, rules between different variation points, and mapping to 

implementations are not acknowledged. This paper describes practices for complementing the 

results of domain engineering in order to design and use domain-specific modeling (DSM) 

languages for product family development. This is achieved by using method engineering, 

metamodels, and metaCASE tools. Method engineering is the discipline of designing, constructing 

and adopting development methods and tools for specific needs (Brimkkemper et al. 1996, Kelly 

& Tolvanen 2000). In particular, it emphasizes the use of metamodels to specify concepts, terms 

and variation rules of product family domain. Metamodel-based tools can then create modeling 

languages and generators based on the metamodel (i.e. product family).  

This paper is based on the experiences of applying DSM languages and generators in 

different type of product famili es, ranging from embedded to financial products. Some famili es, 
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and related DSMs respectively, can be characterized rather stable whereas others are under 

frequent change. Some famili es have their main variabili ty in the user interface, whereas others 

have it in hardware setting, platform services, business rules, or in communication mechanisms. 

Size of the famili es vary from a few to more than 200 members. Size of development teams 

ranges from 4 to more than 300 developers per family. Largest product famili es have over10 

milli on model elements and largest DSM languages have about 500 language constructs 

(metamodel elements in the language). The experiences on language creation were gathered with 

interviews and discussions with domain engineers, personnel responsible for the architecture and 

tooling and with consultants creating DSMs for product family development. 

This paper is organized as follows. In the next section we present environment 

architecture for building and using domain-specific methods. This 3-level architecture is used to 

find appropriate computational models for specifying variation inside a family and to allocate 

variant specification to application development environment. The variant specification with 

domain-specific methods and software production with generators are briefly described with an 

example in Section 4. Section 5 summarizes the main lessons learned from language design and 

implementation. 

2 ENVIRONMENT FOR DOMAIN-SPECIFIC MODELING 

For a comprehensive DSM environment with full automatic generation of variants, three things 

are required: a modeling tool with support for the domain-specific language, a code generator, 

and a domain-specific framework (Czarnecki & Eisenecker 2000, Pohjonen & Kelly 2002). This 

basic architecture is ill ustrated in Figure 1. The left side represents the entities relevant for 

creating the environment – a task that is carried out by domain engineers, while the right side 

ill ustrates the use of the environment by engineers developing family members. 
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Figure 1. Architecture for designing and using a DSM environment. 

50



   

The role of modeling language in a DSM environment is pivotal: as a representation of domain 

concepts and semantics, a modeling language defines static and dynamic variabili ties setting the 

maximum variation space for the product family. The language is formalized into a metamodel 

and all models describing family members are instantiated from this metamodel. This 

instantiation of the language ensures that application developers follow the family approach de 

facto. 

According to our experience, it is impossible to design a DSM language by extending 

current design languages that are based on fixed metamodels (e.g. UML, SA/SD). They simply 

lack the support for domain-specific concepts – those behind every different product family. 

These languages are also based either on the code world, using the semantically well-defined 

concepts of programming languages (e.g. UML, SA/SD), or on an architectural view using a 

simple component-connector concept. In both cases, the languages themselves “ tell ” nothing 

about a specific product family or its members. Instead, such information must be incorporated in 

an informal fashion into the model instances, e.g. via naming conventions, stereotypes, profiles, 

changing the original language semantics, using additional constraint languages (e.g. OCL or 

action semantics) or mappings between implementation independent and implementation 

dependent models, etc). These kinds of language extension mechanisms do not solve the 

underlying problem but just add more overhead to the use of language, thus putting even greater 

responsibili ty to developers. Instead, it is better to use languages that directly apply as their 

language constructs common family-specific terminology. This terminology is typically already 

known and in use, is more natural, reflects already to product variation, as well as is easier to 

use, remember, and read from specification models. 

The task of the code generator is to translate the specific model semantics into an output 

compatible with the domain-specific framework and to provide variation for output formats. It is 

worth to note that restrictions imposed by the domain and the expected output make generator 

development remarkably easier, when compared to generators that are expected to work 

universally. By executing the generators, application developers can support faster variant 

production with fewer errors. Experience reports on applying generators with languages targeted 

to specific domains have shown remarkably fewer errors (e.g. Kieburtz et al. 1996 reports 50% 

less). The task of the domain-specific framework is then to provide the DSM environment with an 

interface for the target platform and programming language. This is achieved by providing the 

atomic implementations of commonali ties and variabili ties as framework-level primitive services 

and components.   

Experience from various type and size of product famili es and reported industrial 

experiences have proven the viabili ty of this architecture. For example, Nokia states that in this 

way it now develops mobile phones up to 10 times faster than earlier (Kelly & Tolvanen 2000), 

and Lucent reports that domain-specific languages improve their productivity by 3-10 times 

depending on the product (Weiss and Lai 1999). The authors are not aware of any other such 

widely and successfully applied architecture for product family development environments. 

3 DEVELOPING FAMILY PRODUCTION FACILITIES 

The starting point for building a family production facili ty is the domain analysis. Domain 

analysis (see Arango 1994 for a survey) identifies the commonali ties and variabili ties among 

possible family members and refines variation points by their characteristics, e.g. static or 
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dynamic variation and parameters of variation space. If such analysis can’ t be made, most likely 

due to an unstable or immature domain, it is diff icult, if not impossible, to put the (automated) 

product family approach into use! 

Like any analysis, domain analysis does not provide any concrete implementations. As a 

next step, domain design and implementation are needed to develop the family architecture and 

facili ties for automated variant production. According to our experiences, especially two aspects 

need to be considered when designing the production facili ties. The first one is the computational 

model that is suitable for specifying the required variation. Another aspect is the required code 

generator output and its target platform and implementation language. These two aspects affect 

each other: sometimes the generation output may require a certain computational model to be 

used, e.g. XML and data models, when most variation points are based on static structures; or 

vice versa, the state machine as a computational model and the state machine as an 

implementation of behavior. The computational model(s) of variation and underlying platform for 

generator output are then represented with the elements of DSM environment, modeling 

languages, generator and domain-specific framework.  

Another important issue related to the development of family production facili ties is the 

tool support. Traditionally, the initial investment for developing production facili ties has been 

very high as there were no cost-effective ways to implement the tool support. Thus, building the 

language and generator support was only feasible for large organizations. More recently, 

however, metaCASE tools with customizable modeling languages and code generators have 

emerged. These tools already include buil t-in environments for both domain engineering and 

product development with editors, browsers, multi-user support, etc. With metaCASE tools 

available, the effort of providing automated production facili ties is reduced to a few man-weeks 

only, focusing mainly on specifying the language and generator definitions into the tool. As a 

result, the tool makes the defined language and generators automatically available to the 

developers, thus enforcing the product family development approach to be followed de facto. 

3.1 Designing the modeling language 

As the modeling language is the only part that is visible for the user and thereby provides the user 

interface for the development, it has to maintain control over all possible variation within the 

product family. The modeling language is also the main factor for productivity increase and it 

should operate on the highest achievable level of abstraction: apply product concepts and rules 

directly as constructs of the modeling language. Thus, the language is kept as independent from 

the target implementation code as possible. It may initially appear easier to build the language as 

an extension on top of the existing code base or platform but this usually leads to a rather limited 

level of abstraction and mapping to domain concepts. 

To ensure a high abstraction level for developers, the language should be based on the 

product family domain itself. The optimal way to achieve this is to use the elements of product 

family architecture, common elements, and particularly those related with variation points. The 

nature of variation (static or behavioral) and level of detail  favors selecting computational models 

that can be represented with certain basic modeling languages. Pure static variabili ty can be 

expressed in data models, while orderly variation requires some sort of flow model, state 

machines advocate state models, etc. All these can be represented formally with metamodels and 

enriching them with variation data and rules allows creating the conceptual part of the modeling 
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language. Once defined, the modeling language (enacted by the supporting tool) guarantees that 

all developers use and follow the same product family rules. 

In most cases it is not possible to cover all variation within just one type of model and 

modeling language. This raises the important questions of model organization, layering, 

integration and reuse. Modeling language development efforts typically start with a flat model 

structure that has all concepts arranged on the same level without any serious attempts to reuse 

them. However, as the complexity of the model grows, while the number of elements increases, 

the flat models are rarely suitable for presenting hierarchical and modularized software products. 

Therefore, we need to be able to present our models in a layered fashion. 

An important criterion for layering is the nature of the variabili ty. For example, a typical 

pattern we have found within the product famili es is to have a language based on behavioral 

computational model (like state machine) to handle the low-level functional aspects of the family 

members and to cover the high-level configuration issues with a language based on a static model 

(like data and component models). Another aspect affecting the layer structure is reuse. The idea 

of reuse-based layering is to treat each model as a reusable component for the models on the 

higher level. In this type of solution, the reusable element has a canonical definition that is stored 

somewhere and referenced where needed. 

3.2 Developing the code generator 

To enable the code generator to produce completely functional and executable output code, the 

models should capture all static and behavioral variation of the target product while the 

framework should provide the required low-level interface with the target platform. This and 

nothing less should be always the goal for the DSM environment and its code generator. This 

ambitious sounding objective can be achieved easier when the sub-domains and related languages 

provide formal and well-bounded starting point. 

As the translation process itself is complex enough, the generator should be kept as 

simple and straightforward as possible. For the same reason, maintaining variabili ty factors 

within the generator structure has been found diff icult – especially when the family domain and 

architecture evolves continuously. Instead of generator-centric approach we have detected that 

before including any variabili ty aspect into the code generator, the nature of the variation must be 

carefully evaluated: if something seems diff icult to support with generator, consider raising it up 

to the modeling language or pushing down to the framework. This also means that the developer 

should do all basic decision-making (like choosing the type of the target platform, if there are 

many) on the model level. 

According to our experiences, the generator is a proper place for approximately only two 

kinds of variation. As each target platform or programming language requires, at least partially, a 

unique generator implementation anyway, it is widely acceptable to handle the target variation 

within the generator. Another suitable way to use the generator for managing variabili ty is to 

build higher-level primitives by combining low-level primitives during generation. 

3.3 Developing the domain framework 

In many cases the differentiation between the target platform and the domain-specific framework 

remains unclear. We have learned to rely on the following definition: target platform includes 

general hardware, operating system, programming languages and software tools, libraries and 

components to be found on target system. The domain framework consists of any additional 
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component or code that is required to support code generation on top of them. It is must be noted 

that in some cases additional framework is not needed but the code generator can interface 

directly with the target platform. 

We have found that, architecturally, frameworks consist of three layers. The components 

and services required to interface with the target platform are on the lowest level. The middle 

level is the core of the framework and it is responsible for implementing the counterparts for the 

logical structures presented by the models as templates and components for higher-level 

variabili ty. The top-level of the framework provides an interface with models by defining the 

expected code generation output, which complies with the code and templates provided by the 

other framework layers. 

4 EXAMPLE 

In the previous chapters we have discussed experiences of building DSM environments without 

concrete examples. For a better understanding of the “ real li fe” process of a DSM environment 

creation, consider the following example. Assume that you are developing a family of related 

digital wristwatch models. According to the domain analysis, each watch consists of a set of 

watch applications that define behaviours of such elementary functions like showing the current 

time, alarm and stopwatch. The watch applications are implemented in Java.1 

The first step for developing a DSM environment for our watch domain was – as 

explained earlier –choosing the suitable computational model for presenting the watch 

applications. In this case we found it best to rely on the typical computational model used with 

embedded software, the state machine. The next step was to enrich and narrow the semantics of 

state machine to focus on the concept of the watch domain. An example of this kind of extended 

state machine is ill ustrated in Figure 2. 

 

Figure 2. State machine with watch domain extensions 

Basically, there are only two watch-specific extensions in our state machine. First, the transtitions 

can be triggered only by the user interaction when a certain button is pressed. Second, the actions 

taking place during the transition may only operate on time unit entities. Also the set of possible 

operations is limited: one can only add or subtract time units or roll then up or down. With these 

basic operations we can cover all current needs of our watch family. If further needs arise in the 

                                                   
1 This is a part of a more comprehensive example. For the complete example, please contact us at {rise, 

jpt}@metacase.com. 
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future, we can simply extend the set of possible operations or define new entity types to operate 

on.  

The definition of legal operations on time units gives us also a hint what is needed on the 

framework side of our DSM environment. In this case, as we were working with Java as our 

target language, we implemented a class of our own that could present time units (from 

milliseconds to hours) and perform the basic addition, subtracting and roll operations on them. 

During the code generation, all time unit entities are instantiated from this class and when a time 

unit operation is encountered, code generator creates a dispatch call to the appropriate platform 

interface primitive. An example of this kind of call can be found on lines 37 and 40 in Listing 1 

that presents the code generated from the state diagram illustrated in Figure 2. 

 
01 // All this code is generated directly from the model. 
02 // Since no manual coding or editing is needed, it is 
03 // not intended to be particularly human-readable 
04  
05 public class SimpleTime extends AbstractWatchApplication { 
06 
07   // define unique numbers for each Action (a...) and DisplayFn (d...) 
08   static final int a22_1405 = +1; //+1+1 
09   static final int a22_2926 = +1+1; //+1 
10   static final int d22_977 = +1+1+1; // 
11 
12 
13   public SimpleTime(Master master) { 
14     super(master); 
15 
16     // Transitions and their triggering buttons and actions 
17     // Arguments: From State, Button, Action, To State 
18     addTransition ("Start [Watch]", "", 0, "Show"); 
19     addTransition ("Show", "Mode", 0, "EditHours"); 
20     addTransition ("EditHours", "Set", a22_2926, "EditHours"); 
21     addTransition ("EditHours", "Mode", 0, "EditMinutes"); 
22     addTransition ("EditMinutes", "Set", a22_1405, "EditMinutes"); 
23     addTransition ("EditMinutes", "Mode", 0, "Show"); 
24 
25     // What to display in each state 
26     // Arguments: State, blinking unit, central unit, DisplayFn 
27     addStateDisplay("Show", -1, METime.MINUTE, d22_977); 
28     addStateDisplay("EditHours", METime.HOUR_OF_DAY, METime.MINUTE, d22_977); 
29     addStateDisplay("EditMinutes", METime.MINUTE, METime.MINUTE, d22_977); 
30   }; 
31 
32   // Actions (return null) and DisplayFns (return time) 
33   public Object perform(int methodId) 
34   { 
35     switch (methodId) { 
36       case a22_2926: 
37         getclockOffset().roll(METime.HOUR_OF_DAY, true, displayTime()); 
38         return null; 
39       case a22_1405: 
40         getclockOffset().roll(METime.MINUTE, true, displayTime()); 
41         return null; 
42       case d22_977: 
43         return getclockTime(); 
44     } 
45     return null; 
46   } 
47 } 

Listing 1. Code generated from state diagram illustrated in Figure 2. 

Listing 1 reveals also another important aspect of the watch implementation: the elementary state 

machine behaviour is implemented as an abstract class, from which the concrete state machine 

implementations are then derived during the code generation. This is an example of the 

implementation of counterpart for logical model construct. Similarly, the general structure of 

code in Listing 1 is an example of definition for expected generator output in model interface 

level of the framework.  
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The above described watch-specific language sets very effectively the variation space 

that was identified during the domain analysis. With the same language very different watch 

functionality can be described. For example, Figure 3 presents a more complex variant of our 

current time application with more editing possibilities. Capturing the variation into the models 

this way is very feasible mechanism for centralized managing the variation in the single source 

fashion. To summarize, using the DSM the manufacturer can now produce very fast and safely 

different variants of its wristwatch family: straight from family concepts in models to executable 

code. 

 

Figure 3. A more complex variant of current time application 

5 CONCLUDING REMARKS 

The lack of appropriate product specification and design languages has hindered a wider adoption 

of the product family development approach. Domain-specific modeling languages provide major 

benefits for product family development. They make a product family explicit, leverage the 

knowledge of the family to help developers, substantially increase the speed of variant creation 

and ensure that the family approach is followed de facto. These benefits are not easily, if at all, 

available for developers in other current product family approaches: reading textual manuals 

about the product family, mapping family aspects to code or code visualization notations, 

browsing components in a library, or trying to follow a (hopefully) shared understanding of a 

common architecture or framework. 

In this paper we have presented architecture and experiences for designing languages and 

generators for product family development. We extend the domain analysis by seeking 
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computational models for describing variation with design models. Our work is based on the use 

of metamodeling to design modeling languages that make a product family explicit: the family 

concepts and variation are captured in a metamodel that forms a modeling language. By 

instantiating the metamodel, models specify product variants within the family. The narrowed 

focus provided by the domain-specific languages makes it easier to automate the variant 

production with purpose-buil t code generators. Generators can incorporate some variant 

handling, but the possibili ty to bring it in front, into the modeling language, appears to be a better 

choice. Generally, the 3-level DSM environment architecture provides a wide variety of options 

for handling the variation, as opposed to approaches where variation can be handled in one place 

only. This is also important when supporting family evolution and reflecting the changes to the 

specifications under development.  

Although building an automated family production facili ty requires an investment of the 

experts’ time and resources, we have found that the investment pays itself back by the time the 

third variant is created. This approach also scales from small teams to large globally distributed 

companies. Interestingly, the amount of expert resources needed to build and maintain a language 

and generators does not grow with the size of product family and/or number of developers. 
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Abstract. Developing a software product line involves the management of variabilities. Variabilities
have to be controlled during each phase of the software development process. This paper focuses on
the implementation of variability in the context of embedded software for automotive systems.
Implementing variability requires knowledge of variability implementation mechanisms, but catalogs
of such mechanisms are still missing. We present a method to identify, document, and evaluate
mechanisms to implement variability. The goal of this paper is to enable a software development
team to build and use their catalog of variability implementation mechanisms.

1. Introduction

Developing a software product line requires the management of commonalities and variabilities of a
set of products. A variability is a difference between distinct products of a product line. The
possible differences are defined by a collection of options which are associated with a variability.
Variabilities have to be controlled during each phase of the software development process.
Variabilities manifest as optional features during requirements engineering, as variation points in
software architecture and design, and, eventually, as different implementations: Developers must
code the options and provide means to select an option for a certain product.

While feature analysis and design have been elicited, e.g., in [Hein et al. 2000], [Lalanda 1999], and
[Thiel, Hein 2002], little work on the implementation of variability has been done [Svahnberg et al.
2002]. Developers who have to implement variability cannot fall back on catalogs containing
variability implementation mechanisms. Moreover, different development environments may call for
a diversity of mechanisms. Also, required system qualities (non-functional requirements) and
technical constraints impose restrictions on the selection of an appropriate mechanism.

Yet variability has to be implemented and this has been done for years. Developers have been using
mechanisms, self-invented or heard-about, documented or undocumented, being aware of the
consequences on system qualities or not.

In this paper we propose a systematic approach: identify and document variability implementation
mechanisms, identify qualities essential to your software development team, and evaluate these
mechanisms according to those qualities. The result will be a catalog of evaluated mechanisms,
specific to your development environment, technical constraints, and qualities essential to you.
When implementing a variability, developers may then select an appropriate mechanism from this
catalog. With this paper we want to encourage and enable software development teams to build a
catalog of their variability implementation mechanisms.

Sections 2, 3, and 4 describe the method we have developed and have been using since: In section 2
we show how to identify and document the mechanisms. Section 3 shows how to find and describe
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qualities considered relevant. In section 4 we evaluate the mechanisms according to these qualities.
In each of these sections a paragraph labeled How to proceed follows, which suggests how the
reader could implement this method in his or her development of a software product line. Section 5
summarizes the resulting artifacts and how developers may use them. In section 6 we address
difficulties we encountered and how we overcame them.

The method we describe is based on the documentation of variability mechanisms in two Bosch
business units. In order to enable other developers to build and use a catalog of their mechanisms
we developed this method, and it got evaluated during the documentation of further mechanisms.

2. Identifying and Documenting Mechanisms

Mechanisms are architectural patterns, design patterns, idioms, or guidelines for coding. A
mechanism to implement variability must offer two indispensable features:

• the implementation of the options
• the technique to select an option for a certain product

Example: Use preprocessor directives to allow for conditional compiling. E.g., enclose code
fragments which deal with option A with #if defined( A ) ... #endif, and code fragments
which deal with option B with #if defined( B ) ... #endif. Then define A when compiling
the code for a product with option A.

This mechanism has certain drawbacks. It is an often used concept though, and this shows that it is
worthwhile to think about the topic we are addressing.

Mechanisms we have documented include branches, dynamic binding, strategy design pattern,
conditional statements, and interpreter [Fritsch et al. 2002b]. They allow to put the implementation
of different options into different functions, modules, or files.

In addition to the two above-mentioned features, a mechanism to implement variability has a
characteristic property, which is closely related to the technique to select an option for a certain
product:

• the binding time

Binding time is the process step when a variability is decided.

Figure 1: Binding Time. Concerning the implementation of embedded automotive system software, we consider four main
phases with binding times: programming, integration, assembly and run time. In programming, core asset development may
happen much earlier than product development, so these are different binding times. Integration builds the executable
software from various sources (code, data, resource files, 3rd party components). During assembly, software may be
configured at End Of Line, e.g., by overwriting parts of flash memory, first at the supplier’s line and later at the
automobile’s line. The latest binding time happens at run time, e.g., software may adapt at system startup to the hardware
it finds itself in, or even later software may adapt dynamically to hardware changes.
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The binding time restricts the selection of a mechanism. E.g., if you need to bind a variability at run
time, you can’t implement it with a mechanism which is bound at compile time [Fritsch et al.
2002a]. A set of binding times for the implementation of embedded automotive system software is
given in figure 1.

How to Proceed. Any mechanism which helps to produce different behavior for different products
may be considered. You find them in books (e.g., [Gamma et al. 1995]) and articles ([Svahnberg et
al. 2002]). However, the best source may be your own code.

Document these mechanisms, and be precise. We propose to use a template which covers

• mechanism name
• solution
• design diagram
• example code
• how options are implemented
• how an option gets selected
• binding time

You may also want to add rules for what purpose a mechanism may be used or not. The result will
be a mechanism catalog which contains mechanisms and their basic properties.

The user of this catalog will need some more criteria to choose a mechanism for a certain
implementation task. E.g., if performance is important, he or she must choose a mechanism which
does not impede this quality.

In the next section we will identify a set of qualities which is relevant for variability
implementation mechanisms. In section 4 we will show how to evaluate mechanisms according to
these qualities. With this evaluation at hand, we can tell a priori which qualities a mechanism will
introduce in the code and in the system we build.

3. Identifying and Documenting Qualities

A software system has to fulfill functional requirements and certain quality attributes (non-
functional requirements) like performance, security, reliability, or modifiability. These qualities
shape a system’s architecture [Bass et al. 1998]. In the context of variability implementation
mechanisms, we are interested in qualities which are relevant to the implementation of
variabilities.

The qualities we have identified as essential concern development and run time:

• Development time qualities show up during the implementation of core assets and product-
specific parts, during maintenance, or extending the product line by variabilities or options.

• Run time qualities show up when a product of the software product line is used, and cover
different aspects like availability, performance, or memory consumption.

These qualities and their sub-qualities can be arranged in a quality tree [Lehn et al. 2002], see
figure 2.
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Figure 2: Quality Tree. Qualities may be arranged hierarchically in a quality tree. Here, development gets refined by
maintainability, extensibility, and robustness. Extensibility – as a major quality of variability implementation – is even
further refined. The leaves of the tree contain the names of quality scenarios which, eventually, define the aspects of a
quality precisely.

Quality Scenarios. Our goal is to evaluate the mechanisms according to the qualities. In order to be
precise, we have captured the leaf qualities as quality scenarios. A quality scenario describes

• context in which the stimulus arrives
• stimulus
• the artifact influenced by the stimulus
• response of the system to the stimulus
• response measures

Thereby we roughly followed the template provided by Bass and Bachmann [Bass, Bachmann 2002].

E.g., quality #5 in the quality tree (figure 2), 2nd Variability, is refined by: A module (class,
component, ...) has one variability <context>. A second variability has to be implemented
<stimulus>. The second variability is independent of the first one, but in the same module
<artifact>. (Independent means, no code deals with options of both variabilities.)  Introducing the
second variability <response> is as easy as introducing the first <response measure>.

For this scenario, it is easy to tell whether a mechanism supports or torpedos it.

How to Proceed. Check the quality tree provided. It should include the situations relevant to you;
expand it if necessary. Add all quality scenarios you consider to be important as leaves of the quality
tree. Think of the situations you could find yourself in after a couple of months or after three years.
Be precise – the above template will help you. The more precise you are, the easier it will be to rank
the mechanisms.

4. Evaluating Mechanisms According to Qualities

After documenting the mechanisms and qualities, the mechanisms get evaluated according to these
qualities. Mechanisms are measured relatively to each other. Usually there is no absolute measure.
We found it worthwhile to look at a certain quality and ask for a set of mechanisms: Which
mechanism supports it the most? Which mechanism torpedos it the most? In this way, one finds a
“good” and a “bad” mechanism. When this is completed, the other mechanisms can be ranked for
this quality. The result is a sequence of mechanisms, all sorted according to a certain quality.
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Presenting the evaluation. The ranking of the mechanisms should be presented in such a way that a
developer, given an implementation task, can choose the best mechanism. We provide two
possibilities [Lehn, Strohm 2002]:

1. Kiviat diagram. Kiviat diagrams, also called radar charts, may be used to graphically present the
qualities of the mechanisms (figure 3). For each mechanism we draw one diagram. Each axis
represents one quality, and each Kiviat diagram has the same axes. On each axis the point gets
marked which represents the ranking of this mechanism according to this quality: A point on the
innermost ring means, this mechanism is one which supports this quality the least, while a point on
the outermost ring means that none of the other considered mechanisms provides better support on
this quality.

Figure 3: Example Kiviat Diagram. The axes are the same for all mechanisms, each represents a certain quality. For a
mechanism we apply its ranking for the different qualities as points on the axes. The figure results from connecting these
points. Kiviat diagrams make use of our ability to recognize and remember facial patterns.

We provide a Kiviat diagram for each mechanism. In such a way visualized, the reader can realize
the qualities of a mechanism and differences between mechanisms regarding a certain quality at a
glance.

2. Mechanism-Quality Matrix. Additionally, we show the quality values of all our mechanisms in a
matrix with mechanism rows and quality columns. In the fields we put the quality value shown in
the Kiviat diagram. The matrix gives an overview of all mechanisms and qualities, and allows to find
the best mechanism for a certain quality.

How to Proceed. Rank your mechanisms according to your qualities. Use your knowledge and
experience to do the ranking. Start with one quality and look for the mechanisms that provide the
most and least amount of support. Rank the other mechanisms relatively. Proceed with the next
quality. Produce Kiviat diagrams and a mechanism-quality matrix.

5. Resulting Artifacts

Following our proposal, you will have in hand and may provide the development team with:

• Mechanism Catalog
• Quality Tree
• Kiviat Diagrams
• Mechanism-Quality Matrix

Scattered Preprocessor Directives

0

1

2

3

4

5

Extensibility
(New variability)

Extensibility
(New option)

Robustness

Start-up performance

Performance

Dynamic Data

Static Data

Maintainability
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A developer who is looking for a mechanism to implement a variability will then

• use the quality tree to decide which qualities the mechanism should support
• draw the corresponding Kiviat diagram or keep it in mind
• browse the provided Kiviat diagrams to determine a set of appropriate mechanisms
• check these mechanisms’ properties in the mechanism catalog
• select the most appropriate mechanism – this may be a trade-off decision
• implement the variability, guided by the mechanism description.

6. Difficulties and How We Dealt with Them

Mechanisms. If we apply certain principles and best practices of design to certain mechanisms, they
will gain a lot of quality. E.g., if you restrict the use of #ifs by a set of rules, the code will tend to
remain readable and maintainable. Whereas, if you don’t restrict it, the code will become
unmaintainable sooner or later, i.e., the mechanism loses quality. Therefore, some mechanisms
appear in two variants in our catalog, and they differ in ranking for some qualities.

Qualities. We started with qualities like “Extensibility with respect to variability” but soon found
out that this was too woolly for evaluating a mechanism. We had to be more precise. So we defined
qualities by quality scenarios, and evaluation on this works better.

Evaluation. Most of the qualities cannot be measured, e.g., there is no general scale according to
which one can say “this mechanism ranks 1, this one ranks 4”. It is difficult to tell for any given
quality how well a mechanism deals with it. What we found feasible was, to look at a certain quality
and ask: Which mechanism fulfills it the best? Which mechanism torpedos it the most? These
questions were easier to answer. Finally, we sort the other mechanisms for this quality, which gives
us the ranking.
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